These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 22493661)

  • 1. Performance analysis of orthogonal pairs designed for an expanded eukaryotic genetic code.
    Nehring S; Budisa N; Wiltschi B
    PLoS One; 2012; 7(4):e31992. PubMed ID: 22493661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Robust and Quantitative Reporter System To Evaluate Noncanonical Amino Acid Incorporation in Yeast.
    Stieglitz JT; Kehoe HP; Lei M; Van Deventer JA
    ACS Synth Biol; 2018 Sep; 7(9):2256-2269. PubMed ID: 30139255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast.
    Stieglitz JT; Van Deventer JA
    ACS Synth Biol; 2022 Jul; 11(7):2284-2299. PubMed ID: 35793554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed Evolution of the
    Schwark DG; Schmitt MA; Fisk JD
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploration of
    Stieglitz JT; Lahiri P; Stout MI; Van Deventer JA
    ACS Synth Biol; 2022 May; 11(5):1824-1834. PubMed ID: 35417129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
    Wang L
    Acc Chem Res; 2017 Nov; 50(11):2767-2775. PubMed ID: 28984438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Evolved Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetase/tRNA Pair Is Highly Active and Orthogonal in Mammalian Cells.
    Beránek V; Willis JCW; Chin JW
    Biochemistry; 2019 Feb; 58(5):387-390. PubMed ID: 30260626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-Tier Screening Platform for Directed Evolution of Aminoacyl-tRNA Synthetases with Enhanced Stop Codon Suppression Efficiency.
    Owens AE; Grasso KT; Ziegler CA; Fasan R
    Chembiochem; 2017 Jun; 18(12):1109-1116. PubMed ID: 28383180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome.
    Neumann H; Wang K; Davis L; Garcia-Alai M; Chin JW
    Nature; 2010 Mar; 464(7287):441-4. PubMed ID: 20154731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual stop codon suppression in mammalian cells with genomically integrated genetic code expansion machinery.
    Meineke B; Heimgärtner J; Caridha R; Block MF; Kimler KJ; Pires MF; Landreh M; Elsässer SJ
    Cell Rep Methods; 2023 Nov; 3(11):100626. PubMed ID: 37935196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Wide Screen for Enhanced Noncanonical Amino Acid Incorporation in Yeast.
    Zackin MT; Stieglitz JT; Van Deventer JA
    ACS Synth Biol; 2022 Nov; 11(11):3669-3680. PubMed ID: 36346914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A general approach for the generation of orthogonal tRNAs.
    Wang L; Schultz PG
    Chem Biol; 2001 Sep; 8(9):883-90. PubMed ID: 11564556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids.
    Pott M; Schmidt MJ; Summerer D
    ACS Chem Biol; 2014 Dec; 9(12):2815-22. PubMed ID: 25299570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs.
    Willis JCW; Chin JW
    Nat Chem; 2018 Aug; 10(8):831-837. PubMed ID: 29807989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool.
    Wan W; Tharp JM; Liu WR
    Biochim Biophys Acta; 2014 Jun; 1844(6):1059-70. PubMed ID: 24631543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoupling Protein Production from Cell Growth Enhances the Site-Specific Incorporation of Noncanonical Amino Acids in
    Galindo Casas M; Stargardt P; Mairhofer J; Wiltschi B
    ACS Synth Biol; 2020 Nov; 9(11):3052-3066. PubMed ID: 33150786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed evolution of aminoacyl-tRNA synthetases through
    Furuhata Y; Rix G; Van Deventer JA; Liu CC
    bioRxiv; 2024 Sep; ():. PubMed ID: 39386665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutants of Escherichia coli initiator tRNA that suppress amber codons in Saccharomyces cerevisiae and are aminoacylated with tyrosine by yeast extracts.
    Lee CP; RajBhandary UL
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11378-82. PubMed ID: 1763051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Twenty-first aminoacyl-tRNA synthetase-suppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria.
    Kowal AK; Kohrer C; RajBhandary UL
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2268-73. PubMed ID: 11226228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overcoming Near-Cognate Suppression in a Release Factor 1-Deficient Host with an Improved Nitro-Tyrosine tRNA Synthetase.
    Beyer JN; Hosseinzadeh P; Gottfried-Lee I; Van Fossen EM; Zhu P; Bednar RM; Karplus PA; Mehl RA; Cooley RB
    J Mol Biol; 2020 Jul; 432(16):4690-4704. PubMed ID: 32569745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.