BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22493978)

  • 1. JAK2 inhibition for the treatment of hematologic and solid malignancies.
    Harry BL; Eckhardt SG; Jimeno A
    Expert Opin Investig Drugs; 2012 May; 21(5):637-55. PubMed ID: 22493978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. JAK2 inhibitors in the treatment of myeloproliferative neoplasms.
    Tibes R; Bogenberger JM; Geyer HL; Mesa RA
    Expert Opin Investig Drugs; 2012 Dec; 21(12):1755-74. PubMed ID: 22991927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. JAK/STAT signaling in hematological malignancies.
    Vainchenker W; Constantinescu SN
    Oncogene; 2013 May; 32(21):2601-13. PubMed ID: 22869151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Jak2 inhibitors: rationale and role as therapeutic agents in hematologic malignancies.
    Sayyah J; Sayeski PP
    Curr Oncol Rep; 2009 Mar; 11(2):117-24. PubMed ID: 19216843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PCM1-JAK2-fusion: a potential treatment target in myelodysplastic-myeloproliferative and other hemato-lymphoid neoplasms.
    Hoeller S; Walz C; Reiter A; Dirnhofer S; Tzankov A
    Expert Opin Ther Targets; 2011 Jan; 15(1):53-62. PubMed ID: 21091042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. JAK2 V617F and beyond: role of genetics and aberrant signaling in the pathogenesis of myeloproliferative neoplasms.
    Oh ST; Gotlib J
    Expert Rev Hematol; 2010 Jun; 3(3):323-37. PubMed ID: 21082983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Janus kinase 2 mutations in Philadelphia negative chronic myeloproliferative disorders: clinical implications.
    Panani AD
    Cancer Lett; 2009 Oct; 284(1):7-14. PubMed ID: 19269737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of oncostatin M as a JAK2 V617F-dependent amplifier of cytokine production and bone marrow remodeling in myeloproliferative neoplasms.
    Hoermann G; Cerny-Reiterer S; Herrmann H; Blatt K; Bilban M; Gisslinger H; Gisslinger B; Müllauer L; Kralovics R; Mannhalter C; Valent P; Mayerhofer M
    FASEB J; 2012 Feb; 26(2):894-906. PubMed ID: 22051730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms.
    Wolach O; Sellar RS; Martinod K; Cherpokova D; McConkey M; Chappell RJ; Silver AJ; Adams D; Castellano CA; Schneider RK; Padera RF; DeAngelo DJ; Wadleigh M; Steensma DP; Galinsky I; Stone RM; Genovese G; McCarroll SA; Iliadou B; Hultman C; Neuberg D; Mullally A; Wagner DD; Ebert BL
    Sci Transl Med; 2018 Apr; 10(436):. PubMed ID: 29643232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The many faces of Janus kinase.
    Seavey MM; Dobrzanski P
    Biochem Pharmacol; 2012 May; 83(9):1136-45. PubMed ID: 22209716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The saga of JAK2 mutations and translocations in hematologic disorders: pathogenesis, diagnostic and therapeutic prospects, and revised World Health Organization diagnostic criteria for myeloproliferative neoplasms.
    Smith CA; Fan G
    Hum Pathol; 2008 Jun; 39(6):795-810. PubMed ID: 18538168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo characterization of SGI-1252, a small molecule inhibitor of JAK2.
    Ahmed KB; Warner SL; Chen A; Gourley ES; Liu X; Vankayalapati H; Nussenzveig R; Prchal JT; Bearss DJ; Parker CJ
    Exp Hematol; 2011 Jan; 39(1):14-25. PubMed ID: 20934482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rethinking JAK2 inhibition: towards novel strategies of more specific and versatile Janus kinase inhibition.
    Leroy E; Constantinescu SN
    Leukemia; 2017 May; 31(5):1023-1038. PubMed ID: 28119526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting hedgehog signaling in myelofibrosis and other hematologic malignancies.
    Tibes R; Mesa RA
    J Hematol Oncol; 2014 Mar; 7():18. PubMed ID: 24598114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitors of JAK2 and JAK3: an update on the patent literature 2010 - 2012.
    Dymock BW; See CS
    Expert Opin Ther Pat; 2013 Apr; 23(4):449-501. PubMed ID: 23367873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Janus kinase inhibitors: an update on the progress and promise of targeted therapy in the myeloproliferative neoplasms.
    Stein BL; Crispino JD; Moliterno AR
    Curr Opin Oncol; 2011 Nov; 23(6):609-16. PubMed ID: 21993415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. JAK inhibition in the myeloproliferative neoplasms: lessons learned from the bench and bedside.
    Gotlib J
    Hematology Am Soc Hematol Educ Program; 2013; 2013():529-37. PubMed ID: 24319228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. JAK2 the future: therapeutic strategies for JAK-dependent malignancies.
    LaFave LM; Levine RL
    Trends Pharmacol Sci; 2012 Nov; 33(11):574-82. PubMed ID: 22995223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ENMD-2076 for hematological malignancies.
    How J; Yee K
    Expert Opin Investig Drugs; 2012 May; 21(5):717-32. PubMed ID: 22397360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of tyrosine kinase inhibitors for hematologic neoplasms. FLT3 and JAK2 as therapeutic targets].
    Lipka D; Heidel F; Huber C; Fischer T
    Pharm Unserer Zeit; 2008; 37(5):394-403. PubMed ID: 18729264
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.