BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 22494151)

  • 1. Environmental heme-based sensor proteins: implications for understanding bacterial pathogenesis.
    Farhana A; Saini V; Kumar A; Lancaster JR; Steyn AJ
    Antioxid Redox Signal; 2012 Nov; 17(9):1232-45. PubMed ID: 22494151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dos, a heme-binding PAS protein from Escherichia coli, is a direct oxygen sensor.
    Delgado-Nixon VM; Gonzalez G; Gilles-Gonzalez MA
    Biochemistry; 2000 Mar; 39(10):2685-91. PubMed ID: 10704219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor.
    Kumar A; Toledo JC; Patel RP; Lancaster JR; Steyn AJ
    Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11568-73. PubMed ID: 17609369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA binding by an imidazole-sensing CooA variant is dependent on the heme redox state.
    Clark RW; Youn H; Lee AJ; Roberts GP; Burstyn JN
    J Biol Inorg Chem; 2007 Feb; 12(2):139-46. PubMed ID: 17082920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transcription regulator RcoM-2 from Burkholderia xenovorans is a cysteine-ligated hemoprotein that undergoes a redox-mediated ligand switch.
    Marvin KA; Kerby RL; Youn H; Roberts GP; Burstyn JN
    Biochemistry; 2008 Aug; 47(34):9016-28. PubMed ID: 18672900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal transduction and phosphoryl transfer by a FixL hybrid kinase with low oxygen affinity: importance of the vicinal PAS domain and receiver aspartate.
    Sousa EH; Tuckerman JR; Gondim AC; Gonzalez G; Gilles-Gonzalez MA
    Biochemistry; 2013 Jan; 52(3):456-65. PubMed ID: 23282139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical and biophysical properties of the CO-sensing transcriptional activator CooA.
    Aono S
    Acc Chem Res; 2003 Nov; 36(11):825-31. PubMed ID: 14622029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast ligand dynamics in the heme-based GAF sensor domains of the histidine kinases DosS and DosT from Mycobacterium tuberculosis.
    Vos MH; Bouzhir-Sima L; Lambry JC; Luo H; Eaton-Rye JJ; Ioanoviciu A; Ortiz de Montellano PR; Liebl U
    Biochemistry; 2012 Jan; 51(1):159-66. PubMed ID: 22142262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the L116K variant of CooA, the heme-containing CO sensor, suggests the presence of an unusual heme ligand resulting in novel activity.
    Youn H; Kerby RL; Thorsteinsson MV; Clark RW; Burstyn JN; Roberts GP
    J Biol Chem; 2002 Sep; 277(37):33616-23. PubMed ID: 12121986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The FixL protein of Rhizobium meliloti can be separated into a heme-binding oxygen-sensing domain and a functional C-terminal kinase domain.
    Monson EK; Weinstein M; Ditta GS; Helinski DR
    Proc Natl Acad Sci U S A; 1992 May; 89(10):4280-4. PubMed ID: 1584762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into heme-based O2 sensing from structure-function relationships in the FixL proteins.
    Rodgers KR; Lukat-Rodgers GS
    J Inorg Biochem; 2005 Apr; 99(4):963-77. PubMed ID: 15811514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of two important heme site residues (cysteine 75 and histidine 77) in CooA, the CO-sensing transcription factor of Rhodospirillum rubrum.
    Shelver D; Thorsteinsson MV; Kerby RL; Chung SY; Roberts GP; Reynolds MF; Parks RB; Burstyn JN
    Biochemistry; 1999 Mar; 38(9):2669-78. PubMed ID: 10052937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the role of the N-terminal proline, the distal heme ligand in the CO sensor CooA.
    Clark RW; Youn H; Parks RB; Cherney MM; Roberts GP; Burstyn JN
    Biochemistry; 2004 Nov; 43(44):14149-60. PubMed ID: 15518565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insight into the heme-based redox sensing by DosS from Mycobacterium tuberculosis.
    Cho HY; Cho HJ; Kim YM; Oh JI; Kang BS
    J Biol Chem; 2009 May; 284(19):13057-67. PubMed ID: 19276084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative resonance Raman analysis of heme-binding PAS domains: heme iron coordination structures of the BjFixL, AxPDEA1, EcDos, and MtDos proteins.
    Tomita T; Gonzalez G; Chang AL; Ikeda-Saito M; Gilles-Gonzalez MA
    Biochemistry; 2002 Apr; 41(15):4819-26. PubMed ID: 11939776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CooA, a paradigm for gas sensing regulatory proteins.
    Roberts GP; Kerby RL; Youn H; Conrad M
    J Inorg Biochem; 2005 Jan; 99(1):280-92. PubMed ID: 15598507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single transduction in the transcriptional activator CooA containing a heme-based CO sensor: isolation of a dominant positive mutant which is active as the transcriptional activator even in the absence of CO.
    Aono S; Matsuo T; Shimono T; Ohkubo K; Takasaki H; Nakajima H
    Biochem Biophys Res Commun; 1997 Nov; 240(3):783-6. PubMed ID: 9398645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of heme axial ligands in the regulation of CO binding to CooA.
    Yamashita T; Hoashi Y; Watanabe K; Tomisugi Y; Ishikawa Y; Uno T
    J Biol Chem; 2004 May; 279(20):21394-400. PubMed ID: 15026411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociation and recombination between ligands and heme in a CO-sensing transcriptional activator CooA. A flash photolysis study.
    Kumazaki S; Nakajima H; Sakaguchi T; Nakagawa E; Shinohara H; Yoshihara K; Aono S
    J Biol Chem; 2000 Dec; 275(49):38378-83. PubMed ID: 10978334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic and redox properties of a CooA homologue from Carboxydothermus hydrogenoformans.
    Inagaki S; Masuda C; Akaishi T; Nakajima H; Yoshioka S; Ohta T; Pal B; Kitagawa T; Aono S
    J Biol Chem; 2005 Feb; 280(5):3269-74. PubMed ID: 15537640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.