These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 22494464)

  • 1. Improvement of depth resolution of ADF-SCEM by deconvolution: effects of electron energy loss and chromatic aberration on depth resolution.
    Zhang X; Takeguchi M; Hashimoto A; Mitsuishi K; Tezuka M; Shimojo M
    Microsc Microanal; 2012 Jun; 18(3):603-11. PubMed ID: 22494464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional optical sectioning by scanning confocal electron microscopy with a stage-scanning system.
    Hashimoto A; Shimojo M; Mitsuishi K; Takeguchi M
    Microsc Microanal; 2010 Jun; 16(3):233-8. PubMed ID: 20350339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional observation of SiO2 hollow spheres with a double-shell structure using aberration-corrected scanning confocal electron microscopy.
    Zhang X; Takeguchi M; Hashimoto A; Mitsuishi K; Wang P; Nellist PD; Kirkland AI; Tezuka M; Shimojo M
    J Electron Microsc (Tokyo); 2012 Jun; 61(3):159-69. PubMed ID: 22460388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging properties of bright-field and annular-dark-field scanning confocal electron microscopy: II. point spread function analysis.
    Mitsuishi K; Hashimoto A; Takeguchi M; Shimojo M; Ishizuka K
    Ultramicroscopy; 2012 Jan; 112(1):53-60. PubMed ID: 22088508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrast in atomically resolved EF-SCEM imaging.
    Wang P; D'Alfonso AJ; Hashimoto A; Morgan AJ; Takeguchi M; Mitsuishi K; Shimojo M; Kirkland AI; Allen LJ; Nellist PD
    Ultramicroscopy; 2013 Nov; 134():185-92. PubMed ID: 23896032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging modes for scanning confocal electron microscopy in a double aberration-corrected transmission electron microscope.
    Nellist PD; Cosgriff EC; Behan G; Kirkland AI
    Microsc Microanal; 2008 Feb; 14(1):82-8. PubMed ID: 18096098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM.
    Xin HL; Muller DA
    J Electron Microsc (Tokyo); 2009 Jun; 58(3):157-65. PubMed ID: 19164489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part II: inelastic scattering.
    D'Alfonso AJ; Cosgriff EC; Findlay SD; Behan G; Kirkland AI; Nellist PD; Allen LJ
    Ultramicroscopy; 2008 Nov; 108(12):1567-78. PubMed ID: 18617330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional imaging in aberration-corrected electron microscopes.
    Xin HL; Muller DA
    Microsc Microanal; 2010 Aug; 16(4):445-55. PubMed ID: 20566002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of chromatic aberration in STEM and SCEM by coherent convergent beam electron diffraction.
    Zheng CL; Etheridge J
    Ultramicroscopy; 2013 Feb; 125():49-58. PubMed ID: 23274685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of chromatic aberration on atomic-resolved spherical aberration corrected STEM images.
    Kuramochi K; Yamazaki T; Kotaka Y; Ohtsuka M; Hashimoto I; Watanabe K
    Ultramicroscopy; 2009 Dec; 110(1):36-42. PubMed ID: 19818560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope.
    Wang P; Behan G; Kirkland AI; Nellist PD; Cosgriff EC; D'Alfonso AJ; Morgan AJ; Allen LJ; Hashimoto A; Takeguchi M; Mitsuishi K; Shimojo M
    Ultramicroscopy; 2011 Jun; 111(7):877-86. PubMed ID: 21093152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging properties of bright-field and annular-dark-field scanning confocal electron microscopy.
    Mitsuishi K; Hashimoto A; Takeguchi M; Shimojo M; Ishizuka K
    Ultramicroscopy; 2010 Dec; 111(1):20-6. PubMed ID: 21111263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the depth resolution of STEM-ADF sectioning by 3D deconvolution.
    Ishizuka A; Ishizuka K; Ishikawa R; Shibata N; Ikuhara Y; Hashiguchi H; Sagawa R
    Microscopy (Oxf); 2021 Mar; 70(2):241-249. PubMed ID: 33048120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope.
    Behan G; Cosgriff EC; Kirkland AI; Nellist PD
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1903):3825-44. PubMed ID: 19687068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth sectioning in scanning transmission electron microscopy based on core-loss spectroscopy.
    D'Alfonso AJ; Findlay SD; Oxley MP; Pennycook SJ; van Benthem K; Allen LJ
    Ultramicroscopy; 2007 Dec; 108(1):17-28. PubMed ID: 17395376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Annular dark-field scanning confocal electron microscopy studied using multislice simulations.
    Hamaoka T; Jao CY; Takeguchi M
    Microscopy (Oxf); 2018 May; ():. PubMed ID: 29762753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image simulation for atomic resolution secondary electron image.
    Wu L; Egerton RF; Zhu Y
    Ultramicroscopy; 2012 Dec; 123():66-73. PubMed ID: 22940532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun.
    Sawada H; Tanishiro Y; Ohashi N; Tomita T; Hosokawa F; Kaneyama T; Kondo Y; Takayanagi K
    J Electron Microsc (Tokyo); 2009 Dec; 58(6):357-61. PubMed ID: 19546144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artifacts in aberration-corrected ADF-STEM imaging.
    Yu Z; Batson PE; Silcox J
    Ultramicroscopy; 2003 Sep; 96(3-4):275-84. PubMed ID: 12871794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.