BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 22494687)

  • 1. Surface modification of silver nanofilms for improved perchlorate detection by surface-enhanced Raman scattering.
    Hao J; Han MJ; Li J; Meng X
    J Colloid Interface Sci; 2012 Jul; 377(1):51-7. PubMed ID: 22494687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New surface-enhanced Raman spectroscopy substrates via self-assembly of silver nanoparticles for perchlorate detection in water.
    Wang W; Gu B
    Appl Spectrosc; 2005 Dec; 59(12):1509-15. PubMed ID: 16390591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced Raman scattering for arsenate detection on multilayer silver nanofilms.
    Han MJ; Hao J; Xu Z; Meng X
    Anal Chim Acta; 2011 Apr; 692(1-2):96-102. PubMed ID: 21501717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrates with discretely immobilized silver nanoparticles for ultrasensitive detection of anions in water using surface-enhanced Raman scattering.
    Tan S; Erol M; Sukhishvili S; Du H
    Langmuir; 2008 May; 24(9):4765-71. PubMed ID: 18376892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembled silver nanochains for surface-enhanced Raman scattering.
    Yang Y; Shi J; Tanaka T; Nogami M
    Langmuir; 2007 Nov; 23(24):12042-7. PubMed ID: 17963408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape control of Ag nanostructures for practical SERS substrates.
    Jeon TY; Park SG; Lee SY; Jeon HC; Yang SM
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):243-8. PubMed ID: 23281631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.
    Fan M; Brolo AG
    Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced Raman scattering of perchlorate on cationic-modified silver nanofilms - Effect of inorganic anions.
    Hao J; Han MJ; Meng X; Weimer W; Wang QK
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1593-9. PubMed ID: 25459720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a heat-induced surface-enhanced Raman scattering sensing method for rapid detection of glutathione in aqueous solutions.
    Huang GG; Han XX; Hossain MK; Ozaki Y
    Anal Chem; 2009 Jul; 81(14):5881-8. PubMed ID: 19518138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dealloying Ag-Al alloy to prepare nanoporous silver as a substrate for surface-enhanced Raman scattering: effects of structural evolution and surface modification.
    Qiu H; Zhang Z; Huang X; Qu Y
    Chemphyschem; 2011 Aug; 12(11):2118-23. PubMed ID: 21626645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using a photochemical method and chitosan to prepare surface-enhanced Raman scattering-active silver nanoparticles.
    Yang KH; Chang CM
    Anal Chim Acta; 2012 Jun; 729():1-6. PubMed ID: 22595427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of silver nanoparticles/single-walled carbon nanotubes composite for surface-enhanced Raman scattering.
    Zhao H; Fu H; Tian C; Ren Z; Tian G
    J Colloid Interface Sci; 2010 Nov; 351(2):343-7. PubMed ID: 20800849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions.
    Ren W; Zhu C; Wang E
    Nanoscale; 2012 Sep; 4(19):5902-9. PubMed ID: 22899096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman spectroscopic detection for perchlorate at low concentrations.
    Gu B; Tio J; Wang W; Ku YK; Dai S
    Appl Spectrosc; 2004 Jun; 58(6):741-4. PubMed ID: 15198828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly-L-lysine-coated silver nanoparticles as positively charged substrates for surface-enhanced Raman scattering.
    Marsich L; Bonifacio A; Mandal S; Krol S; Beleites C; Sergo V
    Langmuir; 2012 Sep; 28(37):13166-71. PubMed ID: 22958086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution.
    Cheng ML; Tsai BC; Yang J
    Anal Chim Acta; 2011 Dec; 708(1-2):89-96. PubMed ID: 22093349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film.
    Chang CC; Yang KH; Liu YC; Yu CC; Wu YH
    Analyst; 2012 Nov; 137(21):4943-50. PubMed ID: 22970430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A surface-enhanced Raman scattering method for detection of trace glutathione on the basis of immobilized silver nanoparticles and crystal violet probe.
    Ouyang L; Zhu L; Jiang J; Tang H
    Anal Chim Acta; 2014 Mar; 816():41-9. PubMed ID: 24580853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Galvanic-cell-induced growth of Ag nanosheet-assembled structures as sensitive and reproducible SERS substrates.
    Li Z; Meng G; Huang Q; Zhu C; Zhang Z; Li X
    Chemistry; 2012 Nov; 18(47):14948-53. PubMed ID: 23079922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array.
    Feng F; Zhi G; Jia HS; Cheng L; Tian YT; Li XJ
    Nanotechnology; 2009 Jul; 20(29):295501. PubMed ID: 19567965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.