BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 22494961)

  • 1. The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna.
    Hartmann NB; Legros S; Von der Kammer F; Hofmann T; Baun A
    Aquat Toxicol; 2012 Aug; 118-119():1-8. PubMed ID: 22494961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles.
    Tan C; Wang WX
    Environ Pollut; 2014 Mar; 186():36-42. PubMed ID: 24361562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of titanium dioxide nanoparticles in the elevated uptake and retention of cadmium and zinc in Daphnia magna.
    Tan C; Fan WH; Wang WX
    Environ Sci Technol; 2012 Jan; 46(1):469-76. PubMed ID: 22082004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of lead from sediment bioturbation by Lumbriculus variegatus on Daphnia magna in the water column.
    Blankson ER; Klerks PL
    Ecotoxicology; 2016 Dec; 25(10):1712-1719. PubMed ID: 27660066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna.
    Wiench K; Wohlleben W; Hisgen V; Radke K; Salinas E; Zok S; Landsiedel R
    Chemosphere; 2009 Sep; 76(10):1356-65. PubMed ID: 19580988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation dynamics and acute toxicity of silver nanoparticles to Daphnia magna and Lumbriculus variegatus: implications for metal modeling approaches.
    Khan FR; Paul KB; Dybowska AD; Valsami-Jones E; Lead JR; Stone V; Fernandes TF
    Environ Sci Technol; 2015 Apr; 49(7):4389-97. PubMed ID: 25756614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phototoxicity of TiO2 nanoparticles under solar radiation to two aquatic species: Daphnia magna and Japanese medaka.
    Ma H; Brennan A; Diamond SA
    Environ Toxicol Chem; 2012 Jul; 31(7):1621-9. PubMed ID: 22544710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna.
    Fan W; Cui M; Liu H; Wang C; Shi Z; Tan C; Yang X
    Environ Pollut; 2011 Mar; 159(3):729-34. PubMed ID: 21177008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete - Part I: Relative importance of water and sediment as exposure routes.
    Ramskov T; Thit A; Croteau MN; Selck H
    Aquat Toxicol; 2015 Jul; 164():81-91. PubMed ID: 25935103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress responses of Daphnia magna exposed to TiO(2) nanoparticles according to size fraction.
    Kim KT; Klaine SJ; Cho J; Kim SH; Kim SD
    Sci Total Environ; 2010 Apr; 408(10):2268-72. PubMed ID: 20153877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced cadmium accumulation and toxicity in Daphnia magna under carbon nanotube exposure.
    Liu J; Wang WX
    Environ Toxicol Chem; 2015 Dec; 34(12):2824-32. PubMed ID: 26094590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of agglomeration on the bioaccumulation of sub-100 nm sized TiO₂.
    Kwon D; Jeon SK; Yoon TH
    Colloids Surf B Biointerfaces; 2014 Apr; 116():277-83. PubMed ID: 24495458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Algal testing of titanium dioxide nanoparticles--testing considerations, inhibitory effects and modification of cadmium bioavailability.
    Hartmann NB; Von der Kammer F; Hofmann T; Baalousha M; Ottofuelling S; Baun A
    Toxicology; 2010 Mar; 269(2-3):190-7. PubMed ID: 19686796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmission Electron Microscopy and Scanning Transmission X-Ray Microscopy Studies on the Bioaccumulation and Tissue Level Absorption of TiO2 Nanoparticles in Daphnia magna.
    Kwon D; Nho HW; Yoon TH
    J Nanosci Nanotechnol; 2015 Jun; 15(6):4229-38. PubMed ID: 26369034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinetics of cadmium in Daphnia magna as affected by humic substances and water hardness.
    Penttinen S; Kukkonen J; Oikari A
    Ecotoxicol Environ Saf; 1995 Feb; 30(1):72-6. PubMed ID: 7540539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute toxicity, critical body residues, Michaelis-Menten analysis of bioaccumulation, and ionoregulatory disturbance in response to waterborne nickel in four invertebrates: Chironomus riparius, Lymnaea stagnalis, Lumbriculus variegatus and Daphnia pulex.
    Leonard EM; Wood CM
    Comp Biochem Physiol C Toxicol Pharmacol; 2013 Jun; 158(1):10-21. PubMed ID: 23570754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute waterborne and chronic sediment toxicity of silver and titanium dioxide nanomaterials towards the oligochaete, Lumbriculus variegatus.
    Little S; Johnston HJ; Stone V; Fernandes TF
    NanoImpact; 2021 Jan; 21():100291. PubMed ID: 35559780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute toxicity of nanosized TiO(2) to Daphnia magna under UVA irradiation.
    Amiano I; Olabarrieta J; Vitorica J; Zorita S
    Environ Toxicol Chem; 2012 Nov; 31(11):2564-6. PubMed ID: 22887344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure to sublethal concentrations of Co
    Heinlaan M; Muna M; Juganson K; Oriekhova O; Stoll S; Kahru A; Slaveykova VI
    Aquat Toxicol; 2017 Aug; 189():123-133. PubMed ID: 28623688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cd2+ toxicity as affected by bare TiO2 nanoparticles and their bulk counterpart.
    Yang WW; Li Y; Miao AJ; Yang LY
    Ecotoxicol Environ Saf; 2012 Nov; 85():44-51. PubMed ID: 22975689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.