These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 224953)
21. Absorption changes of carotenoids and bacteriochlorophyll in energized chromatophores of Rhodospirillum rubrum. Barsky EL; Samuilov VD Biochim Biophys Acta; 1973 Dec; 325(3):454-62. PubMed ID: 4360256 [No Abstract] [Full Text] [Related]
22. Characterization of primary reactants in bacterial photosynthesis. I. Comparison of the light-induced EPR signal (g=2.0026) with that of a bacteriochlorophyll radical. McElroy JD; Feher G; Mauzerall DC Biochim Biophys Acta; 1972 May; 267(2):363-74. PubMed ID: 4339582 [No Abstract] [Full Text] [Related]
23. Functional interfacing of Rhodospirillum rubrum chromatophores to a conducting support for capture and conversion of solar energy. Harrold JW; Woronowicz K; Lamptey JL; Awong J; Baird J; Moshar A; Vittadello M; Falkowski PG; Niederman RA J Phys Chem B; 2013 Sep; 117(38):11249-59. PubMed ID: 23789750 [TBL] [Abstract][Full Text] [Related]
24. Role of ubiquinone-10 in electron transport system of chromatophores from Rhodospirillum rubrum. Higuti T; Erabi T; Kakuno T; Horio T J Biochem; 1975 Jul; 78(1):51-6. PubMed ID: 172493 [TBL] [Abstract][Full Text] [Related]
25. [Absorption changes in spectral forms of bacteriochlorophyll in Rhodospirillum rubrum chromatophores]. Barskiĭ EL; Samuilov VD Biokhimiia; 1972; 37(5):1005-11. PubMed ID: 4629048 [No Abstract] [Full Text] [Related]
26. [Study of microwave photolosses in chromatophores of photosynthesizing Rhodospirillum rubrum bacteria]. Skachkov MP; Trukhan EM; Kharchenko SG Biofizika; 1981; 26(1):69-73. PubMed ID: 6784778 [TBL] [Abstract][Full Text] [Related]
27. [Interaction of redox mediators with chromatophores of the photosynthetic bacterium Rhodospirillum rubrum]. Sled' VD; Verkhovskiĭ MI; Shinkarev VP; Mulkidzhanian AIa; Grishanova NP Mol Biol (Mosk); 1983; 17(1):33-41. PubMed ID: 6408397 [No Abstract] [Full Text] [Related]
28. [Cyclic electron transfer and membrane potential generation in chromatophores on non-sulfur bacteria Rhodospirillum rubrum]. Remennikov VG; Samuilov VD Biokhimiia; 1980 Jul; 45(7):1298-304. PubMed ID: 6783130 [TBL] [Abstract][Full Text] [Related]
29. [Dicyclohexylcarbodiimide as an inhibitor of light- and pyrophosphate-induced formation of membrane potential in chromatophores of purple bacteria]. Pototskiĭ NIa; Samuilov VD Biokhimiia; 1983 Aug; 48(8):1235-40. PubMed ID: 6414533 [TBL] [Abstract][Full Text] [Related]
31. [Determination of the distance between charges following their photoseparation in chromatophores from R. rubrum]. Kulikov AV; Mel'nikov AV; Bogatyrenko VR; Syrtsova LA; Likhtenshteĭn GI Biofizika; 1979; 24(2):337-9. PubMed ID: 221054 [No Abstract] [Full Text] [Related]
32. The effect of electron donors and acceptors on light-induced absorbance changes and photophosphorylation in Rhodospirillum rubrum chromatophores. Silberstein BR; Epel BL; Malkin S; Gromet-Elhanan Z Eur J Biochem; 1977 Oct; 80(1):135-41. PubMed ID: 411652 [TBL] [Abstract][Full Text] [Related]
33. Picosecond absorbance difference spectra of the antenna of photosynthetic purple bacteria. The influence of exciton interactions and librations. Danielius R; Novoderezhkin V; Razjivin A FEBS Lett; 1994 May; 345(2-3):203-6. PubMed ID: 8200456 [TBL] [Abstract][Full Text] [Related]
34. [Shifts of the bacteriochlorophyll absorption band at 880 nm in chromatophores and subchromatophore pigment-protein complexes from Rhodospirillum rubrum]. Barskiĭ EL; Samuilov VD Biokhimiia; 1979 Oct; 44(10):1805-13. PubMed ID: 41599 [TBL] [Abstract][Full Text] [Related]
35. [Delayed bacteriochlorophyll luminescence and the primary stages of electron transport in photosynthetic reaction centers of purple bacteria]. Borisov AIu; Kotova EA; Samuilov VD Mol Biol (Mosk); 1984; 18(4):869-91. PubMed ID: 6095028 [TBL] [Abstract][Full Text] [Related]
36. Flash-induced photophosphorylation in Rhodospirillum rubrum chromatophores. I. The relationship between cytochrome c-420 content and photophosphorylation. del Valle-Tascon S; van Grondelle R; Duysens LN Biochim Biophys Acta; 1978 Oct; 504(1):26-39. PubMed ID: 213110 [TBL] [Abstract][Full Text] [Related]
37. [Photophosphorylation and binding of phosphates to chromatophores in Rhodospirillum rubrum]. Lutz HU; Bachofen R Zentralbl Bakteriol Orig A; 1972 May; 220(1):387-93. PubMed ID: 4145605 [No Abstract] [Full Text] [Related]
38. [Role of cofactors in membrane potential generation by Rhodospirillum rubrum chromatophores incorporated in a teflon filter]. Smirnova IA; Konstantinov AA; Skulachev VP Biokhimiia; 1981 Jul; 46(7):1155-66. PubMed ID: 6791704 [TBL] [Abstract][Full Text] [Related]
39. [Functional organization of the electron transport chain of Rhodospirillum rubrum chromatophores in the absence of an exogenous electron donor]. Ratynĭ AI; Riznichenko GIu; Chamorovskiĭ SK; Vorob'eva TN; Pyt'eva NF Biofizika; 1979; 24(4):671-5. PubMed ID: 113038 [No Abstract] [Full Text] [Related]
40. A kinetic study of the production of light-induced ESR signals in Rhodospirillum rubrum chromatophores. Bolton JR; Cost K; Frenkel AW Arch Biochem Biophys; 1968 Aug; 126(2):383-7. PubMed ID: 4299680 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]