These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 224953)
41. The dibromothymoquinone effect on membrane potential generation in Rhodospirillum rubrum chromatophores. Oleskin AV; Samuilov VD Membr Biochem; 1983; 5(1):77-95. PubMed ID: 6316108 [TBL] [Abstract][Full Text] [Related]
42. Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodospirillum sphaeroides using reconstitution methodology with bacteriochlorophyll analogs. Davis CM; Parkes-Loach PS; Cook CK; Meadows KA; Bandilla M; Scheer H; Loach PA Biochemistry; 1996 Mar; 35(9):3072-84. PubMed ID: 8608148 [TBL] [Abstract][Full Text] [Related]
43. Photo-induced electron transport and water state in Rhodospirillum rubrum chromatophores. Nikolaev GM; Knox PP; Kononenko AA; Grishanova NP; Rubin AB Biochim Biophys Acta; 1980 Apr; 590(2):194-201. PubMed ID: 6768386 [TBL] [Abstract][Full Text] [Related]
44. Excitation trapping by different states of photosynthetic reaction centres. Godik VI; Borisov AY FEBS Lett; 1977 Oct; 82(2):355-8. PubMed ID: 410664 [No Abstract] [Full Text] [Related]
45. The effect of aging resolved chromatophores of Rhodospirillum rubrum on the capacity to reconstitute the energy-linked transhydrogenation. Guber S; Konings AW; Guillory RJ Biochim Biophys Acta; 1972 Jan; 255(1):161-70. PubMed ID: 4400928 [No Abstract] [Full Text] [Related]
46. Development and growth of photosynthetic membranes of Rhodospirillum rubrum. Inamine GS; Niederman RA J Bacteriol; 1982 Jun; 150(3):1145-53. PubMed ID: 6804438 [TBL] [Abstract][Full Text] [Related]
47. [Structural organization of membranes reconstituted from phospholipids and subchromatophore pigment-protein complexes]. Kondrashin AA; Samuilov VD; Frolov VN Biokhimiia; 1980 Aug; 45(8):1510-6. PubMed ID: 6786374 [TBL] [Abstract][Full Text] [Related]
48. [Bacteriochlorophyll fluorescence changes related to the bacteriopheophytin photoreduction in the chromatophores of purple sulfur bacteria]. Klimov VV; Shuvalov VA; Krakhmaleva IN; Karapetian NV; Krasiovskiĭ AA Biokhimiia; 1976 Aug; 41(8):1435-41. PubMed ID: 1024595 [TBL] [Abstract][Full Text] [Related]
49. A spin-label study of the photosynthetic bacterium, Rhodospirillum rubrum; Reduction and regeneration of nitroxide spin-labels. Maruyama K; Onishi S J Biochem; 1974 May; 75(5):1153-64. PubMed ID: 4369732 [No Abstract] [Full Text] [Related]
50. EPR and optical spectroscopic properties of the electron carrier intermediate between the reaction center bacteriochlorophylls and the primary acceptor in Chromatium vinosum. Tiede DM; Prince RC; Dutton PL Biochim Biophys Acta; 1976 Dec; 449(3):447-67. PubMed ID: 187221 [TBL] [Abstract][Full Text] [Related]
51. Amount and turnover rate of the F0F1-ATPase and the stoichiometry of its inhibition by oligomycin in Rhodospirillum rubrum chromatophores. Norling B; Strid A; Tourikas C; Nyrén P Eur J Biochem; 1989 Dec; 186(1-2):333-7. PubMed ID: 2532130 [TBL] [Abstract][Full Text] [Related]
52. Effects of stearic spin-labels on the photochemical activities of chromatophores from Rhodospirillum rubrum. Maruyama K; Onishi S J Biochem; 1974 May; 75(5):1165-8. PubMed ID: 4213074 [No Abstract] [Full Text] [Related]
53. The interaction of the free radical of 5-methylphenazinium methyl sulfate with the light-induced free radical of Rhodospirillum rubrum chromatophores. Cost K; Bolton JR; Frenkel AW Proc Natl Acad Sci U S A; 1967 Apr; 57(4):868-75. PubMed ID: 4291921 [No Abstract] [Full Text] [Related]
54. [Noncyclic electron transport and membrane potential generation in the chromatophores of Rhodospirillum rubrum]. Remennikov VG; Samuilov VD Nauchnye Doki Vyss Shkoly Biol Nauki; 1979; (5):45-52. PubMed ID: 110361 [No Abstract] [Full Text] [Related]
55. Proteins exposed at the surface of chromatophores of Rhodospirillum rubrum: the orientation of isolated chromatophores. Oelze J Biochim Biophys Acta; 1978 Jun; 509(3):450-61. PubMed ID: 418810 [TBL] [Abstract][Full Text] [Related]
56. The permeability of Rhodospirillum rubrum chromatophores to thiocyanate and perchlorate as detected by light-induced fluorochrome fluorescence changes and by photophosphorylation. Gromet-Elhanan Z Biochim Biophys Acta; 1972 Jul; 275(1):125-9. PubMed ID: 4340267 [No Abstract] [Full Text] [Related]
57. Kinetics of the fluorescence change and P8 70 bleaching in chromatophores from Rhodospirillum rubrum. Malkin S; Silberstein B Biochim Biophys Acta; 1972 Sep; 275(3):369-82. PubMed ID: 4627084 [No Abstract] [Full Text] [Related]
58. Evidence for a correlation between the photoinduced electron transfer and dynamic properties of the chromatophore membranes from Rhodospirillum rubrum. Parak F; Frolov EN; Kononenko AA; Mössbauer RL; Goldanskii VI; Rubin AB FEBS Lett; 1980 Aug; 117(1):368-72. PubMed ID: 6773810 [No Abstract] [Full Text] [Related]
59. Comparison of the electrochemical proton gradient and phosphate potential maintained by Rhodospirillum rubrum chromatophores in the steady state. Leiser M; Gromet-Elhanan Z Arch Biochem Biophys; 1977 Jan; 178(1):79-88. PubMed ID: 402116 [No Abstract] [Full Text] [Related]
60. X-ray diffraction studies on chromatophore membrane from photosynthetic bacteria. III. Basic structure of the photosynthetic unit and its relation to other bacteriochlorophyll forms. Nakamoto S; Kataoka M; Ueki T J Biochem; 1984 Dec; 96(6):1831-9. PubMed ID: 6442292 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]