BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22495785)

  • 21. Encapsulation of polystyrene latex with temperature-responsive poly(N-isopropylacrylamide) via a self-assembling approach and the adsorption behaviors therein.
    Sun Q; Deng Y
    Langmuir; 2005 Jun; 21(13):5812-6. PubMed ID: 15952827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oligo(ethylene glycol)-based thermoresponsive core-shell microgels.
    Chi C; Cai T; Hu Z
    Langmuir; 2009 Apr; 25(6):3814-9. PubMed ID: 19708256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glucose-responsive microgels with a core-shell structure.
    Lapeyre V; Ancla C; Catargi B; Ravaine V
    J Colloid Interface Sci; 2008 Nov; 327(2):316-23. PubMed ID: 18804779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual-stimuli responsive PNiPAM microgel achieved via layer-by-layer assembly: magnetic and thermoresponsive.
    Wong JE; Gaharwar AK; Müller-Schulte D; Bahadur D; Richtering W
    J Colloid Interface Sci; 2008 Aug; 324(1-2):47-54. PubMed ID: 18514212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of pH and temperature sensitive, core-shell nano/microgels, by one pot, soap-free emulsion polymerization.
    Serrano-Medina A; Cornejo-Bravo JM; Licea-Claveríe A
    J Colloid Interface Sci; 2012 Mar; 369(1):82-90. PubMed ID: 22226474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal-chelating and dansyl-labeled poly(N-isopropylacrylamide) microgels as fluorescent Cu2+ sensors with thermo-enhanced detection sensitivity.
    Yin J; Guan X; Wang D; Liu S
    Langmuir; 2009 Oct; 25(19):11367-74. PubMed ID: 19708645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms controlling the temperature-dependent binding of proteins to poly(N-isopropylacrylamide) microgels.
    Grabstain V; Bianco-Peled H
    Biotechnol Prog; 2003; 19(6):1728-33. PubMed ID: 14656148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Gold Nanoparticles on the Thermosensitivity, Morphology, and Optical Properties of Poly(acrylamide-acrylic acid) Microgels.
    Echeverria C; Mijangos C
    Macromol Rapid Commun; 2010 Jan; 31(1):54-8. PubMed ID: 21590836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imaging the volume transition in thermosensitive core-shell particles by cryo-transmission electron microscopy.
    Crassous JJ; Ballauff M; Drechsler M; Schmidt J; Talmon Y
    Langmuir; 2006 Mar; 22(6):2403-6. PubMed ID: 16519427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of binary microgel phase behavior on the assembly of multi-functional raspberry-structured microgel heteroaggregates.
    Saxena S; Lyon LA
    J Colloid Interface Sci; 2015 Oct; 455():93-100. PubMed ID: 26057600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complex phase separation in poly(acrylonitrile-butadiene-styrene)-modified epoxy/4,4'-diaminodiphenyl sulfone blends: generation of new micro- and nanosubstructures.
    Jyotishkumar P; Koetz J; Tiersch B; Strehmel V; Ozdilek C; Moldenaers P; Hässler R; Thomas S
    J Phys Chem B; 2009 Apr; 113(16):5418-30. PubMed ID: 19331324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graphical analysis for gel morphology. III. Gel size and temperature effects on the volume phase transition of gels.
    Hashimoto C; Ushiki H
    J Chem Phys; 2006 Jan; 124(4):044903. PubMed ID: 16460208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dumbbell-shaped polyelectrolyte brushes studied by depolarized dynamic light scattering.
    Hoffmann M; Lu Y; Schrinner M; Ballauff M; Harnau L
    J Phys Chem B; 2008 Nov; 112(47):14843-50. PubMed ID: 18956899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Core-shell-structured monodisperse copolymer/silica particle suspension and its electrorheological response.
    Liu YD; Quan X; Hwang B; Kwon YK; Choi HJ
    Langmuir; 2014 Feb; 30(7):1729-34. PubMed ID: 24512519
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Composite hydrogels with temperature sensitive heterogeneities: influence of gel matrix on the volume phase transition of embedded poly-(N-isopropylacrylamide) microgels.
    Meid J; Friedrich T; Tieke B; Lindner P; Richtering W
    Phys Chem Chem Phys; 2011 Feb; 13(8):3039-47. PubMed ID: 20882241
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of shell thickness and cross-link density on the structure of temperature-sensitive poly-N-isopropylacrylamide-poly-N-isopropylmethacrylamide core-shell microgels investigated by small-angle neutron scattering.
    Berndt I; Pedersen JS; Lindner P; Richtering W
    Langmuir; 2006 Jan; 22(1):459-68. PubMed ID: 16378460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature controlled release from polystyrene-block-poly(N-isopropylacrylamide-block-polystyrene block copolymer hydrogel.
    Ruokolainen J; Nykänen A; Priimägi A; Rahikkala A; Hirvonen SP; Raula J; Tenhu H; Kauppinen E; Mezzenga R
    J Control Release; 2010 Nov; 148(1):e53-4. PubMed ID: 21529624
    [No Abstract]   [Full Text] [Related]  

  • 38. Synthesis of Y-shaped poly(solketal acrylate)-containing block copolymers and study on the thermoresponsive behavior for micellar aggregates.
    Yang J; Zhang D; Jiang S; Yang J; Nie J
    J Colloid Interface Sci; 2010 Dec; 352(2):405-14. PubMed ID: 20887998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-step preparation of uniform cane-ball shaped water-swellable microgels containing poly(N-vinyl formamide).
    Thaiboonrod S; Cellesi F; Ulijn RV; Saunders BR
    Langmuir; 2012 Mar; 28(11):5227-36. PubMed ID: 22224722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced activity of enzymes immobilized in thermoresponsive core-shell microgels.
    Welsch N; Wittemann A; Ballauff M
    J Phys Chem B; 2009 Dec; 113(49):16039-45. PubMed ID: 19905007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.