BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22496246)

  • 21. Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains.
    Garcia-Olivares J; Alekov A; Boroumand MR; Begemann B; Hidalgo P; Fahlke C
    J Physiol; 2008 Nov; 586(22):5325-36. PubMed ID: 18801843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Review. Proton-coupled gating in chloride channels.
    Lísal J; Maduke M
    Philos Trans R Soc Lond B Biol Sci; 2009 Jan; 364(1514):181-7. PubMed ID: 18957380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cofilin interacts with ClC-5 and regulates albumin uptake in proximal tubule cell lines.
    Hryciw DH; Wang Y; Devuyst O; Pollock CA; Poronnik P; Guggino WB
    J Biol Chem; 2003 Oct; 278(41):40169-76. PubMed ID: 12904289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Properties of voltage-gated chloride channels of the ClC gene family.
    Jentsch TJ; Günther W; Pusch M; Schwappach B
    J Physiol; 1995 Jan; 482(P):19S-25S. PubMed ID: 7730971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ClC and CFTR chloride channel gating.
    Foskett JK
    Annu Rev Physiol; 1998; 60():689-717. PubMed ID: 9558482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorylation and functional regulation of ClC-2 chloride channels expressed in Xenopus oocytes by M cyclin-dependent protein kinase.
    Furukawa T; Ogura T; Zheng YJ; Tsuchiya H; Nakaya H; Katayama Y; Inagaki N
    J Physiol; 2002 May; 540(Pt 3):883-93. PubMed ID: 11986377
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultradian rhythm in the intestine of Caenorhabditis elegans is controlled by the C-terminal region of the FLR-1 ion channel and the hydrophobic domain of the FLR-4 protein kinase.
    Kobayashi Y; Kimura KD; Katsura I
    Genes Cells; 2011 May; 16(5):565-75. PubMed ID: 21518154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional role of amino terminus in ClC-3 chloride channel regulation by phosphorylation and cell volume.
    Rossow CF; Duan D; Hatton WJ; Britton F; Hume JR; Horowitz B
    Acta Physiol (Oxf); 2006; 187(1-2):5-19. PubMed ID: 16734738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and function of clc channels.
    Chen TY
    Annu Rev Physiol; 2005; 67():809-39. PubMed ID: 15709979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of gating in voltage-dependent ClC-2 chloride channel by point mutations affecting the pore and C-terminus CBS-2 domain.
    Yusef YR; Zúñiga L; Catalán M; Niemeyer MI; Cid LP; Sepúlveda FV
    J Physiol; 2006 Apr; 572(Pt 1):173-81. PubMed ID: 16469788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular determinants of common gating of a ClC chloride channel.
    Bennetts B; Parker MW
    Nat Commun; 2013; 4():2507. PubMed ID: 24064982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Serum and glucocorticoid inducible kinases functionally regulate ClC-2 channels.
    Palmada M; Dieter M; Boehmer C; Waldegger S; Lang F
    Biochem Biophys Res Commun; 2004 Sep; 321(4):1001-6. PubMed ID: 15358127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural basis for ion conduction and gating in ClC chloride channels.
    Dutzler R
    FEBS Lett; 2004 Apr; 564(3):229-33. PubMed ID: 15111101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of the CLC-1 chloride channel from
    Park E; MacKinnon R
    Elife; 2018 May; 7():. PubMed ID: 29809153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Channel-like slippage modes in the human anion/proton exchanger ClC-4.
    Alekov AK; Fahlke C
    J Gen Physiol; 2009 May; 133(5):485-96. PubMed ID: 19364886
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anion- and proton-dependent gating of ClC-4 anion/proton transporter under uncoupling conditions.
    Orhan G; Fahlke C; Alekov AK
    Biophys J; 2011 Mar; 100(5):1233-41. PubMed ID: 21354396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidation and reduction control of the inactivation gating of Torpedo ClC-0 chloride channels.
    Li Y; Yu WP; Lin CW; Chen TY
    Biophys J; 2005 Jun; 88(6):3936-45. PubMed ID: 15778445
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal sensitivity of CLC and TMEM16 chloride channels and transporters.
    Pusch M; Zifarelli G
    Curr Top Membr; 2014; 74():213-31. PubMed ID: 25366238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of CLC-Ka/barttin by the ubiquitin ligase Nedd4-2 and the serum- and glucocorticoid-dependent kinases.
    Embark HM; Böhmer C; Palmada M; Rajamanickam J; Wyatt AW; Wallisch S; Capasso G; Waldegger P; Seyberth HW; Waldegger S; Lang F
    Kidney Int; 2004 Nov; 66(5):1918-25. PubMed ID: 15496163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gating and trafficking of ClC-2 chloride channel without cystathionine beta-synthase domains.
    Arreola J; De Santiago-Castillo JA; Sánchez JE; Nieto PG
    J Physiol; 2008 Nov; 586(22):5289. PubMed ID: 19011132
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.