These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 22496248)

  • 21. Residues characterisation from the fluidised bed combustion of East London's solid recovered fuel.
    Balampanis DE; Pollard SJ; Simms N; Longhurst P; Coulon F; Villa R
    Waste Manag; 2010 Jul; 30(7):1318-24. PubMed ID: 20231082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energetic utilisation of refuse derived fuels from landfill mining.
    Rotheut M; Quicker P
    Waste Manag; 2017 Apr; 62():101-117. PubMed ID: 28228358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The biogenic content of process streams from mechanical-biological treatment plants producing solid recovered fuel. Do the manual sorting and selective dissolution determination methods correlate?
    Séverin M; Velis CA; Longhurst PJ; Pollard SJ
    Waste Manag; 2010 Jul; 30(7):1171-82. PubMed ID: 20116991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.
    Nasrullah M; Vainikka P; Hannula J; Hurme M; Oinas P
    Waste Manag Res; 2016 Jan; 34(1):38-46. PubMed ID: 26608898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A review of energy recovery from waste in China.
    Dorn T; Flamme S; Nelles M
    Waste Manag Res; 2012 Apr; 30(4):432-41. PubMed ID: 22492261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solid recovered fuels in the cement industry with special respect to hazardous waste.
    Thomanetz E
    Waste Manag Res; 2012 Apr; 30(4):404-12. PubMed ID: 22573713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.
    Gug J; Cacciola D; Sobkowicz MJ
    Waste Manag; 2015 Jan; 35():283-92. PubMed ID: 25453320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Municipal solid waste management in India: From waste disposal to recovery of resources?
    Narayana T
    Waste Manag; 2009 Mar; 29(3):1163-6. PubMed ID: 18829290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The application of SRF vs. RDF classification and specifications to the material flows of two mechanical-biological treatment plants of Rome: Comparison and implications.
    Di Lonardo MC; Franzese M; Costa G; Gavasci R; Lombardi F
    Waste Manag; 2016 Jan; 47(Pt B):195-205. PubMed ID: 26243051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The strategy for conservation non-renewable natural resources through producing and application solid recovery fuel in the cement industry: a case study for Lithuania.
    Pitak I; Rinkevičius D; Kalpokaitė-Dičkuvienė R; Baltušnikas A; Denafas G
    Environ Sci Pollut Res Int; 2022 Oct; 29(46):69618-69634. PubMed ID: 35576030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluidized bed gasification of industrial solid recovered fuels.
    Arena U; Di Gregorio F
    Waste Manag; 2016 Apr; 50():86-92. PubMed ID: 26896004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterisation and composition identification of waste-derived fuels obtained from municipal solid waste using thermogravimetry: A review.
    Gerassimidou S; Velis CA; Williams PT; Komilis D
    Waste Manag Res; 2020 Sep; 38(9):942-965. PubMed ID: 32705957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design, quality, and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry.
    Sarc R; Lorber KE; Pomberger R; Rogetzer M; Sipple EM
    Waste Manag Res; 2014 Jul; 32(7):565-85. PubMed ID: 24942836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.
    Saqib N; Bäckström M
    Waste Manag; 2014 Dec; 34(12):2505-19. PubMed ID: 25263218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recovery of plastic wastes from dumpsite as refuse-derived fuel and its utilization in small gasification system.
    Chiemchaisri C; Charnnok B; Visvanathan C
    Bioresour Technol; 2010 Mar; 101(5):1522-7. PubMed ID: 19758801
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chlorine characterization and thermal behavior in MSW and RDF.
    Ma W; Hoffmann G; Schirmer M; Chen G; Rotter VS
    J Hazard Mater; 2010 Jun; 178(1-3):489-98. PubMed ID: 20171781
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Origins of major and minor ash constituents of solid recovered fuel for co-processing in the cement industry.
    Viczek SA; Aldrian A; Pomberger R; Sarc R
    Waste Manag; 2021 May; 126():423-432. PubMed ID: 33836393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of the self-heating and spontaneous ignition of refuse-derived fuel (RDF) during storage.
    Yasuhara A; Amano Y; Shibamoto T
    Waste Manag; 2010 Jul; 30(7):1161-4. PubMed ID: 19963363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Competition of different methods for recovering energy from waste.
    Friege H; Fendel A
    Waste Manag Res; 2011 Oct; 29(10 Suppl):30-8. PubMed ID: 21824986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solid recovered fuels in the cement industry--semi-automated sample preparation unit as a means for facilitated practical application.
    Aldrian A; Sarc R; Pomberger R; Lorber KE; Sipple EM
    Waste Manag Res; 2016 Mar; 34(3):254-64. PubMed ID: 26759433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.