BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22496282)

  • 1. Experimental evaluation of the anti-attachment effect of microalgal mats on grazing activity of the sea urchin Strongylocentrotus nudus in oscillating flows.
    Kawamata S
    J Exp Biol; 2012 May; 215(Pt 9):1464-71. PubMed ID: 22496282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term study of behaviors of two cohabiting sea urchin species,
    Zhadan PM; Vaschenko MA
    PeerJ; 2019; 7():e8087. PubMed ID: 31772840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal and hydrodynamic environments mediate individual and aggregative feeding of a functionally important omnivore in reef communities.
    Frey DL; Gagnon P
    PLoS One; 2015; 10(3):e0118583. PubMed ID: 25774674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Rock Type and Food Availability on Bioerosion by the Purple Sea Urchin, Strongylocentrotus purpuratus.
    Troha LU; Narvaez CA; Russell MP
    Integr Comp Biol; 2024 Jun; ():. PubMed ID: 38830805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density-dependent feedbacks, hysteresis, and demography of overgrazing sea urchins.
    Ling SD; Kriegisch N; Woolley B; Reeves SE
    Ecology; 2019 Feb; 100(2):e02577. PubMed ID: 30707451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetic context determines the effects of multiple upwelling-associated stressors on sea urchin performance.
    Murie KA; Bourdeau PE
    Sci Rep; 2021 May; 11(1):11313. PubMed ID: 34059741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecological role of purple sea urchins.
    Pearse JS
    Science; 2006 Nov; 314(5801):940-1. PubMed ID: 17095690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drift-kelp suppresses foraging movement of overgrazing sea urchins.
    Kriegisch N; Reeves SE; Flukes EB; Johnson CR; Ling SD
    Oecologia; 2019 Jul; 190(3):665-677. PubMed ID: 31250188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seascapes and foraging success: Movement and resource discovery by a benthic marine herbivore.
    MacGregor KA; Johnson LE
    Ecol Evol; 2022 Sep; 12(9):e9243. PubMed ID: 36110878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conspecific alarm cues are a potential effective barrier to regulate foraging behavior of the sea urchin Mesocentrotus nudus.
    Chi X; Hu F; Qin C; Huang X; Sun J; Cui Z; Ding J; Yang M; Chang Y; Zhao C
    Mar Environ Res; 2021 Oct; 171():105476. PubMed ID: 34534801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of removing sea urchins (Strongylocentrotus droebachiensis): Stability of the barren state and succession of kelp forest recovery in the east Atlantic.
    Leinaas HP; Christie H
    Oecologia; 1996 Mar; 105(4):524-536. PubMed ID: 28307146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High fitness areas drive the aggregation of the sea urchin
    Yu Y; Sun J; Chang Y; Zhao C
    PeerJ; 2022; 10():e12820. PubMed ID: 35111413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sunflower sea star predation on urchins can facilitate kelp forest recovery.
    Galloway AWE; Gravem SA; Kobelt JN; Heady WN; Okamoto DK; Sivitilli DM; Saccomanno VR; Hodin J; Whippo R
    Proc Biol Sci; 2023 Feb; 290(1993):20221897. PubMed ID: 36809801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal inhibitory effects of marine plants on sea urchins: structuring communities the algal way.
    Konar B
    Oecologia; 2000 Oct; 125(2):208-217. PubMed ID: 24595832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of five southern California macroalgal diets on consumption, growth, and gonad weight, in the purple sea urchin Strongylocentrotus purpuratus.
    Foster MC; Byrnes JE; Reed DC
    PeerJ; 2015; 3():e719. PubMed ID: 25653904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The present is the key to the past: linking regime shifts in kelp beds to the distribution of deep-living sea urchins.
    Filbee-Dexter K; Scheibling RE
    Ecology; 2017 Jan; 98(1):253-264. PubMed ID: 28052391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of oscillatory flow on fertilization in the green sea urchin Strongylocentrotus droebachiensis.
    Kregting LT; Bass AL; Guadayol Ã’; Yund PO; Thomas FI
    PLoS One; 2013; 8(9):e76082. PubMed ID: 24098766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing the efficacy of sea urchin exclusion methods for restoring kelp.
    Sharma R; Swearer SE; Morris RL; Strain EMA
    Mar Environ Res; 2021 Aug; 170():105439. PubMed ID: 34365122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sea urchin repelling Tannin- Fe
    Kim S; Jung SM; Jung S; Shin HW; Hwang DS
    Chemosphere; 2021 Jan; 263():128276. PubMed ID: 33297220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Supplementary Kelp Feeding on the Growth, Gonad Yield, and Nutritional and Organoleptic Quality of Subadult Sea Urchin (
    Di W; Heqiu Y; Gou D; Gong P; Ding J; Chang Y; Zuo R
    Aquac Nutr; 2023; 2023():8894923. PubMed ID: 38023983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.