These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 22496290)
41. Representation of object's shape by multiple electric images in electrolocation. Fujita K; Kashimori Y Biol Cybern; 2019 Jun; 113(3):239-255. PubMed ID: 30627851 [TBL] [Abstract][Full Text] [Related]
42. Active electrolocation of objects in weakly electric fish. von der Emde G J Exp Biol; 1999 May; 202(# (Pt 10)):1205-15. PubMed ID: 10210662 [TBL] [Abstract][Full Text] [Related]
43. Sensitivity to novel feedback at different phases of a gymnotid electric organ discharge. Schuster S; Otto N J Exp Biol; 2002 Nov; 205(Pt 21):3307-20. PubMed ID: 12324540 [TBL] [Abstract][Full Text] [Related]
44. The electric image in weakly electric fish: perception of objects of complex impedance. Budelli R; Caputi AA J Exp Biol; 2000 Feb; 203(Pt 3):481-92. PubMed ID: 10637177 [TBL] [Abstract][Full Text] [Related]
45. Passive and active electroreception during agonistic encounters in the weakly electric fish Gymnotus omarorum. Pedraja F; Perrone R; Silva A; Budelli R Bioinspir Biomim; 2016 Oct; 11(6):065002. PubMed ID: 27767014 [TBL] [Abstract][Full Text] [Related]
46. Enhanced sensory sampling precedes self-initiated locomotion in an electric fish. Jun JJ; Longtin A; Maler L J Exp Biol; 2014 Oct; 217(Pt 20):3615-28. PubMed ID: 25320268 [TBL] [Abstract][Full Text] [Related]
47. Electric field interactions in pairs of electric fish: modeling and mimicking naturalistic inputs. Kelly M; Babineau D; Longtin A; Lewis JE Biol Cybern; 2008 Jun; 98(6):479-90. PubMed ID: 18491161 [TBL] [Abstract][Full Text] [Related]
48. Electrosensory interference in naturally occurring aggregates of a species of weakly electric fish, Eigenmannia virescens. Tan EW; Nizar JM; Carrera-G E; Fortune ES Behav Brain Res; 2005 Oct; 164(1):83-92. PubMed ID: 16099058 [TBL] [Abstract][Full Text] [Related]
49. Waveform diversity of electric organ discharges: the role of electric organ auto-excitability in Gymnotus spp. Rodríguez-Cattáneo A; Caputi AA J Exp Biol; 2009 Nov; 212(Pt 21):3478-89. PubMed ID: 19837890 [TBL] [Abstract][Full Text] [Related]
50. Application of reduced sensor movement sequences as a precursor for search area partitioning and a selection of discrete EEV contour-ring fragments for active electrolocation. Wolf-Homeyer S; Engelmann J; Schneider A Bioinspir Biomim; 2018 Oct; 13(6):066008. PubMed ID: 30226470 [TBL] [Abstract][Full Text] [Related]
51. Sensory flow shaped by active sensing: sensorimotor strategies in electric fish. Hofmann V; Sanguinetti-Scheck JI; Künzel S; Geurten B; Gómez-Sena L; Engelmann J J Exp Biol; 2013 Jul; 216(Pt 13):2487-500. PubMed ID: 23761474 [TBL] [Abstract][Full Text] [Related]
52. Encoding electric signals by Gymnotus omarorum: heuristic modeling of tuberous electroreceptor organs. Cilleruelo ER; Caputi AA Brain Res; 2012 Jan; 1434():102-14. PubMed ID: 21835395 [TBL] [Abstract][Full Text] [Related]
53. Object discrimination through active electrolocation: Shape recognition and the influence of electrical noise. Schumacher S; Burt de Perera T; von der Emde G J Physiol Paris; 2016 Oct; 110(3 Pt B):151-163. PubMed ID: 27979703 [TBL] [Abstract][Full Text] [Related]
54. Sensory processing in the fast electrosensory pathway of pulse gymnotids studied at multiple integrative levels. Castelló ME; Nogueira J; Trujillo-Cenóz O; Caputi AA Comp Biochem Physiol A Mol Integr Physiol; 2008 Nov; 151(3):370-380. PubMed ID: 17513149 [TBL] [Abstract][Full Text] [Related]
55. The neural dynamics of sensory focus. Clarke SE; Longtin A; Maler L Nat Commun; 2015 Nov; 6():8764. PubMed ID: 26549346 [TBL] [Abstract][Full Text] [Related]
56. Temporal selectivity in midbrain electrosensory neurons identified by modal variation in active sensing. Pluta SR; Kawasaki M J Neurophysiol; 2010 Jul; 104(1):498-507. PubMed ID: 20505132 [TBL] [Abstract][Full Text] [Related]
57. Precision measurement of electric organ discharge timing from freely moving weakly electric fish. Jun JJ; Longtin A; Maler L J Neurophysiol; 2012 Apr; 107(7):1996-2007. PubMed ID: 22190625 [TBL] [Abstract][Full Text] [Related]
58. Distance discrimination during active electrolocation in the weakly electric fish Gnathonemus petersii. Schwarz S; von der Emde G J Comp Physiol A; 2000-2001; 186(12):1185-97. PubMed ID: 11288829 [TBL] [Abstract][Full Text] [Related]
59. Active sensing via movement shapes spatiotemporal patterns of sensory feedback. Stamper SA; Roth E; Cowan NJ; Fortune ES J Exp Biol; 2012 May; 215(Pt 9):1567-74. PubMed ID: 22496294 [TBL] [Abstract][Full Text] [Related]
60. Receptive field organization across multiple electrosensory maps. II. Computational analysis of the effects of receptive field size on prey localization. Maler L J Comp Neurol; 2009 Oct; 516(5):394-422. PubMed ID: 19655388 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]