These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22496487)

  • 41. Metal ion redox potential plays an important role in high-yield synthesis of monodisperse silver nanoparticles.
    Li L; Hu F; Xu D; Shen S; Wang Q
    Chem Commun (Camb); 2012 May; 48(39):4728-30. PubMed ID: 22493776
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surface-confined synthesis of silver nanoparticle composite coating on electrospun polyimide nanofibers.
    Carlberg B; Ye LL; Liu J
    Small; 2011 Nov; 7(21):3057-66. PubMed ID: 21901829
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation of a SERS substrate and its sample-loading method for point-of-use application.
    Fang C; Agarwal A; Ji H; Karen WY; Yobas L
    Nanotechnology; 2009 Oct; 20(40):405604. PubMed ID: 19738294
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis and characterization of [(110m)Ag]-nanoparticles with application to whole-body autoradiography of aquatic organisms.
    Al-Sid-Cheikh M; Pelletier E; Rouleau C
    Appl Radiat Isot; 2011 Oct; 69(10):1415-21. PubMed ID: 21764324
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deposition of hermetic silver shells onto copper flakes.
    Njagi JI; Netzband CM; Goia DV
    J Colloid Interface Sci; 2017 Feb; 488():72-78. PubMed ID: 27821341
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metal deposition by electroless plating on polydopamine functionalized micro- and nanoparticles.
    Mondin G; Wisser FM; Leifert A; Mohamed-Noriega N; Grothe J; Dörfler S; Kaskel S
    J Colloid Interface Sci; 2013 Dec; 411():187-93. PubMed ID: 24041548
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Visual determination of Cu2+ through copper-catalysed in situ formation of Ag nanoparticles.
    Yuan X; Chen Y
    Analyst; 2012 Oct; 137(19):4516-23. PubMed ID: 22890221
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhancement at the junction of silver nanorods.
    Gu GH; Suh JS
    Langmuir; 2008 Aug; 24(16):8934-8. PubMed ID: 18616307
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Field-assisted synthesis of SERS-active silver nanoparticles using conducting polymers.
    Xu P; Jeon SH; Mack NH; Doorn SK; Williams DJ; Han X; Wang HL
    Nanoscale; 2010 Aug; 2(8):1436-40. PubMed ID: 20820731
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Potential controlling highly-efficient catalysis of wheat-like silver particles for electrochemiluminescence immunosensor labeled by nano-Pt@Ru and multi-sites biotin/streptavidin affinity.
    Mao L; Yuan R; Chai Y; Zhuo Y; Jiang W
    Analyst; 2011 Apr; 136(7):1450-5. PubMed ID: 21321688
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Light-induced modification of silver nanoparticles with functional polymers.
    Stolzer L; Ahmed I; Rodriguez-Emmenegger C; Trouillet V; Bockstaller P; Barner-Kowollik C; Fruk L
    Chem Commun (Camb); 2014 May; 50(34):4430-3. PubMed ID: 24643477
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biomimetic preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial "green" silver nanoparticles using aqueous extract of Citrus sinensis peel.
    Konwarh R; Gogoi B; Philip R; Laskar MA; Karak N
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):338-45. PubMed ID: 21316933
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fabrication of small-sized silver NPs/graphene sheets for high-quality surface-enhanced Raman scattering.
    Zhao H; Fu H; Zhao T; Wang L; Tan T
    J Colloid Interface Sci; 2012 Jun; 375(1):30-4. PubMed ID: 22436726
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method.
    Gorup LF; Longo E; Leite ER; Camargo ER
    J Colloid Interface Sci; 2011 Aug; 360(2):355-8. PubMed ID: 21616500
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components.
    Sileika TS; Kim HD; Maniak P; Messersmith PB
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4602-10. PubMed ID: 22044029
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers.
    Zhang H; Smith JA; Oyanedel-Craver V
    Water Res; 2012 Mar; 46(3):691-9. PubMed ID: 22169660
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced two-photon emission in coupled metal nanoparticles induced by conjugated polymers.
    Guan Z; Polavarapu L; Xu QH
    Langmuir; 2010 Dec; 26(23):18020-3. PubMed ID: 21028762
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metal nanoparticle formation in oil media using di(2-ethylhexyl) phosphoric acid (HDEHP).
    Bucak S; Pugh-Jones A; Lewis C; Steytler DC
    J Colloid Interface Sci; 2008 Apr; 320(1):163-7. PubMed ID: 18201711
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metal nanoparticle deposition for TOF-SIMS signal enhancement of polymers.
    Marcus A; Winograd N
    Anal Chem; 2006 Jan; 78(1):141-8. PubMed ID: 16383321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.