These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 22496526)

  • 21. Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules.
    Frémaux N; Gerstner W
    Front Neural Circuits; 2015; 9():85. PubMed ID: 26834568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. STDP Allows Close-to-Optimal Spatiotemporal Spike Pattern Detection by Single Coincidence Detector Neurons.
    Masquelier T
    Neuroscience; 2018 Oct; 389():133-140. PubMed ID: 28668487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks.
    Garrido JA; Luque NR; Tolu S; D'Angelo E
    Int J Neural Syst; 2016 Aug; 26(5):1650020. PubMed ID: 27079422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Hypothetical Model Concerning How Spike-Timing-Dependent Plasticity Contributes to Neural Circuit Formation and Initiation of the Critical Period in Barrel Cortex.
    Kimura F; Itami C
    J Neurosci; 2019 May; 39(20):3784-3791. PubMed ID: 30877173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Representation of input structure in synaptic weights by spike-timing-dependent plasticity.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021912. PubMed ID: 20866842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectral analysis of input spike trains by spike-timing-dependent plasticity.
    Gilson M; Fukai T; Burkitt AN
    PLoS Comput Biol; 2012; 8(7):e1002584. PubMed ID: 22792056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model.
    Saudargiene A; Porr B; Wörgötter F
    Neural Comput; 2004 Mar; 16(3):595-625. PubMed ID: 15006093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spike timing-dependent plasticity: a learning rule for dendritic integration in rat CA1 pyramidal neurons.
    Campanac E; Debanne D
    J Physiol; 2008 Feb; 586(3):779-93. PubMed ID: 18048448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interplay of the magnitude and time-course of postsynaptic Ca2+  concentration in producing spike timing-dependent plasticity.
    Carlson KD; Giordano N
    J Comput Neurosci; 2011 Jun; 30(3):747-58. PubMed ID: 21120688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developmental Switch in Spike Timing-Dependent Plasticity and Cannabinoid-Dependent Reorganization of the Thalamocortical Projection in the Barrel Cortex.
    Itami C; Huang JY; Yamasaki M; Watanabe M; Lu HC; Kimura F
    J Neurosci; 2016 Jun; 36(26):7039-54. PubMed ID: 27358460
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Learning the structure of correlated synaptic subgroups using stable and competitive spike-timing-dependent plasticity.
    Meffin H; Besson J; Burkitt AN; Grayden DB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041911. PubMed ID: 16711840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Local learning rules: predicted influence of dendritic location on synaptic modification in spike-timing-dependent plasticity.
    Saudargiene A; Porr B; Wörgötter F
    Biol Cybern; 2005 Feb; 92(2):128-38. PubMed ID: 15696313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. STDP-based spiking deep convolutional neural networks for object recognition.
    Kheradpisheh SR; Ganjtabesh M; Thorpe SJ; Masquelier T
    Neural Netw; 2018 Mar; 99():56-67. PubMed ID: 29328958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of inhibitory spike-timing-dependent plasticity on fast sparsely synchronized rhythms in a small-world neuronal network.
    Kim SY; Lim W
    Neural Netw; 2018 Oct; 106():50-66. PubMed ID: 30025272
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Triplets of spikes in a model of spike timing-dependent plasticity.
    Pfister JP; Gerstner W
    J Neurosci; 2006 Sep; 26(38):9673-82. PubMed ID: 16988038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium time course as a signal for spike-timing-dependent plasticity.
    Rubin JE; Gerkin RC; Bi GQ; Chow CC
    J Neurophysiol; 2005 May; 93(5):2600-13. PubMed ID: 15625097
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.
    Burbank KS
    PLoS Comput Biol; 2015 Dec; 11(12):e1004566. PubMed ID: 26633645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type.
    Lu JT; Li CY; Zhao JP; Poo MM; Zhang XH
    J Neurosci; 2007 Sep; 27(36):9711-20. PubMed ID: 17804631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.