These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 22496530)

  • 1. β-Adrenergic modulation of spontaneous spatiotemporal activity patterns and synchrony in hyperexcitable hippocampal circuits.
    Hazra A; Rosenbaum R; Bodmann B; Cao S; Josić K; Žiburkus J
    J Neurophysiol; 2012 Jul; 108(2):658-71. PubMed ID: 22496530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of the beta-adrenergic receptor subtypes expressed by CA1 pyramidal cells in the rat hippocampus.
    Hillman KL; Doze VA; Porter JE
    J Pharmacol Exp Ther; 2005 Aug; 314(2):561-7. PubMed ID: 15908513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propagation dynamics of epileptiform activity acutely induced by bicuculline in the hippocampal-parahippocampal region of the isolated Guinea pig brain.
    Uva L; Librizzi L; Wendling F; de Curtis M
    Epilepsia; 2005 Dec; 46(12):1914-25. PubMed ID: 16393157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-activated afterhyperpolarizations regulate synchronization and timing of epileptiform bursts in hippocampal CA3 pyramidal neurons.
    Fernández de Sevilla D; Garduño J; Galván E; Buño W
    J Neurophysiol; 2006 Dec; 96(6):3028-41. PubMed ID: 16971683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the neuronal aggregate generating seizures in the rat tetanus toxin model of epilepsy.
    Finnerty GT; Jefferys JG
    J Neurophysiol; 2002 Dec; 88(6):2919-27. PubMed ID: 12466418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta1 adrenergic receptor-mediated enhancement of hippocampal CA3 network activity.
    Jurgens CW; Rau KE; Knudson CA; King JD; Carr PA; Porter JE; Doze VA
    J Pharmacol Exp Ther; 2005 Aug; 314(2):552-60. PubMed ID: 15908512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha2A adrenergic receptor activation inhibits epileptiform activity in the rat hippocampal CA3 region.
    Jurgens CW; Hammad HM; Lichter JA; Boese SJ; Nelson BW; Goldenstein BL; Davis KL; Xu K; Hillman KL; Porter JE; Doze VA
    Mol Pharmacol; 2007 Jun; 71(6):1572-81. PubMed ID: 17341653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of increased local excitatory circuits in the hippocampus during epileptogenesis using focal flash photolysis of caged glutamate.
    Shao LR; Dudek FE
    Epilepsia; 2005; 46 Suppl 5():100-6. PubMed ID: 15987262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initiation and propagation of neuronal coactivation in the developing hippocampus.
    Bolea S; Sanchez-Andres JV; Huang X; Wu JY
    J Neurophysiol; 2006 Jan; 95(1):552-61. PubMed ID: 16177178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergence and propagation of interictal spikes in the subcortically denervated hippocampus.
    Buzsáki G; Hsu M; Slamka C; Gage FH; Horváth Z
    Hippocampus; 1991 Apr; 1(2):163-80. PubMed ID: 1669291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity-dependent induction and maintenance of epileptiform activity produced by group I metabotropic glutamate receptors in the rat hippocampal slice.
    Karr L; Rutecki PA
    Epilepsy Res; 2008 Sep; 81(1):14-23. PubMed ID: 18495430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noradrenergic modulation of epileptiform bursting and synaptic plasticity in the dentate gyrus.
    Stanton PK
    Epilepsy Res Suppl; 1992; 7():135-50. PubMed ID: 1334659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow oscillation state facilitates epileptiform events in the hippocampus.
    Nazer F; Dickson CT
    J Neurophysiol; 2009 Sep; 102(3):1880-9. PubMed ID: 19553480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early developmental alterations of low-Mg2+ -induced epileptiform activity in the intact corticohippocampal formation of the newborn mouse in vitro.
    Moser J; Kilb W; Werhahn KJ; Luhmann HJ
    Brain Res; 2006 Mar; 1077(1):170-7. PubMed ID: 16510134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre- and postsynaptic beta-adrenergic activation enhances excitatory synaptic transmission in layer V/VI pyramidal neurons of the medial prefrontal cortex of rats.
    Ji XH; Cao XH; Zhang CL; Feng ZJ; Zhang XH; Ma L; Li BM
    Cereb Cortex; 2008 Jul; 18(7):1506-20. PubMed ID: 17965126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adrenergic receptor modulation of hippocampal CA3 network activity.
    Jurgens CW; Boese SJ; King JD; Pyle SJ; Porter JE; Doze VA
    Epilepsy Res; 2005; 66(1-3):117-28. PubMed ID: 16140503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+-ATPases in the rat CA1 hippocampal region.
    Vaillend C; Mason SE; Cuttle MF; Alger BE
    J Neurophysiol; 2002 Dec; 88(6):2963-78. PubMed ID: 12466422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency bands and spatiotemporal dynamics of beta burst stimulation induced afterdischarges in hippocampus in vivo.
    Mikkonen JE; Penttonen M
    Neuroscience; 2005; 130(1):239-47. PubMed ID: 15561440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMDA receptor-dependent high-frequency network oscillations (100-300 Hz) in rat hippocampal slices.
    Papatheodoropoulos C
    Neurosci Lett; 2007 Mar; 414(3):197-202. PubMed ID: 17316998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The slow Ca2+ -dependent K+ -current facilitates synchronization of hyperexcitable pyramidal neurons.
    Skov J; Nedergaard S; Andreasen M
    Brain Res; 2009 Feb; 1252():76-86. PubMed ID: 19059224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.