These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 2249663)
1. Mutations altering heat shock specific subunit of RNA polymerase suppress major cellular defects of E. coli mutants lacking the DnaK chaperone. Bukau B; Walker GC EMBO J; 1990 Dec; 9(12):4027-36. PubMed ID: 2249663 [TBL] [Abstract][Full Text] [Related]
2. Delta dnaK52 mutants of Escherichia coli have defects in chromosome segregation and plasmid maintenance at normal growth temperatures. Bukau B; Walker GC J Bacteriol; 1989 Nov; 171(11):6030-8. PubMed ID: 2681151 [TBL] [Abstract][Full Text] [Related]
3. Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism. Bukau B; Walker GC J Bacteriol; 1989 May; 171(5):2337-46. PubMed ID: 2651398 [TBL] [Abstract][Full Text] [Related]
4. DnaK mutants defective in ATPase activity are defective in negative regulation of the heat shock response: expression of mutant DnaK proteins results in filamentation. McCarty JS; Walker GC J Bacteriol; 1994 Feb; 176(3):764-80. PubMed ID: 8300530 [TBL] [Abstract][Full Text] [Related]
5. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Tomoyasu T; Ogura T; Tatsuta T; Bukau B Mol Microbiol; 1998 Nov; 30(3):567-81. PubMed ID: 9822822 [TBL] [Abstract][Full Text] [Related]
6. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32. Arsène F; Tomoyasu T; Mogk A; Schirra C; Schulze-Specking A; Bukau B J Bacteriol; 1999 Jun; 181(11):3552-61. PubMed ID: 10348869 [TBL] [Abstract][Full Text] [Related]
7. The rpoD gene functions as a multicopy suppressor for mutations in the chaperones, CbpA, DnaJ and DnaK, in Escherichia coli. Shiozawa T; Ueguchi C; Mizuno T FEMS Microbiol Lett; 1996 May; 138(2-3):245-50. PubMed ID: 9026454 [TBL] [Abstract][Full Text] [Related]
8. Cloning and characterization of the dnaK heat shock operon of the marine bacterium Vibrio harveyi. Klein G; Zmijewski M; Krzewska J; Czeczatka M; Lipińska B Mol Gen Genet; 1998 Aug; 259(2):179-89. PubMed ID: 9747709 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32. Zhou YN; Kusukawa N; Erickson JW; Gross CA; Yura T J Bacteriol; 1988 Aug; 170(8):3640-9. PubMed ID: 2900239 [TBL] [Abstract][Full Text] [Related]
10. Antibody to sigma 32 cross-reacts with DnaK: association of DnaK protein with Escherichia coli RNA polymerase. Skelly S; Fu CF; Dalie B; Redfield B; Coleman T; Brot N; Weissbach H Proc Natl Acad Sci U S A; 1988 Aug; 85(15):5497-501. PubMed ID: 3041413 [TBL] [Abstract][Full Text] [Related]
11. Mutations in the rpoH (htpR) gene of Escherichia coli K-12 phenotypically suppress a temperature-sensitive mutant defective in the sigma 70 subunit of RNA polymerase. Grossman AD; Zhou YN; Gross C; Heilig J; Christie GE; Calendar R J Bacteriol; 1985 Mar; 161(3):939-43. PubMed ID: 3882672 [TBL] [Abstract][Full Text] [Related]
12. Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis. Schulz A; Tzschaschel B; Schumann W Mol Microbiol; 1995 Feb; 15(3):421-9. PubMed ID: 7540247 [TBL] [Abstract][Full Text] [Related]
13. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli. Nagai H; Yuzawa H; Kanemori M; Yura T Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10280-4. PubMed ID: 7937941 [TBL] [Abstract][Full Text] [Related]
14. Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Tomoyasu T; Mogk A; Langen H; Goloubinoff P; Bukau B Mol Microbiol; 2001 Apr; 40(2):397-413. PubMed ID: 11309122 [TBL] [Abstract][Full Text] [Related]
15. DnaK chaperone-mediated control of activity of a sigma(32) homolog (RpoH) plays a major role in the heat shock response of Agrobacterium tumefaciens. Nakahigashi K; Yanagi H; Yura T J Bacteriol; 2001 Sep; 183(18):5302-10. PubMed ID: 11514513 [TBL] [Abstract][Full Text] [Related]
16. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Straus D; Walter W; Gross CA Genes Dev; 1990 Dec; 4(12A):2202-9. PubMed ID: 2269429 [TBL] [Abstract][Full Text] [Related]
17. Autoregulation of the Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins. Liberek K; Georgopoulos C Proc Natl Acad Sci U S A; 1993 Dec; 90(23):11019-23. PubMed ID: 8248205 [TBL] [Abstract][Full Text] [Related]
18. Both ambient temperature and the DnaK chaperone machine modulate the heat shock response in Escherichia coli by regulating the switch between sigma 70 and sigma 32 factors assembled with RNA polymerase. Blaszczak A; Zylicz M; Georgopoulos C; Liberek K EMBO J; 1995 Oct; 14(20):5085-93. PubMed ID: 7588636 [TBL] [Abstract][Full Text] [Related]
19. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response. Zhang H; Yang J; Wu S; Gong W; Chen C; Perrett S J Biol Chem; 2016 Mar; 291(13):6967-81. PubMed ID: 26823468 [TBL] [Abstract][Full Text] [Related]