BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22496730)

  • 1. Regulation of mat responses by a differentiation MAPK pathway in Saccharomyces cerevisiae.
    Karunanithi S; Joshi J; Chavel C; Birkaya B; Grell L; Cullen PJ
    PLoS One; 2012; 7(4):e32294. PubMed ID: 22496730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Filamentation Regulatory Pathways Control Adhesion-Dependent Surface Responses in Yeast.
    Chow J; Starr I; Jamalzadeh S; Muniz O; Kumar A; Gokcumen O; Ferkey DM; Cullen PJ
    Genetics; 2019 Jul; 212(3):667-690. PubMed ID: 31053593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregate Filamentous Growth Responses in Yeast.
    Chow J; Dionne HM; Prabhakar A; Mehrotra A; Somboonthum J; Gonzalez B; Edgerton M; Cullen PJ
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30842272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofilm/Mat assays for budding yeast.
    Cullen PJ
    Cold Spring Harb Protoc; 2015 Feb; 2015(2):172-5. PubMed ID: 25646504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Wsc1p cell wall signaling protein controls biofilm (Mat) formation independently of Flo11p in Saccharomyces cerevisiae.
    Sarode N; Davis SE; Tams RN; Reynolds TB
    G3 (Bethesda); 2014 Feb; 4(2):199-207. PubMed ID: 24318926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacuolar protein sorting genes regulate mat formation in Saccharomyces cerevisiae by Flo11p-dependent and -independent mechanisms.
    Sarode N; Miracle B; Peng X; Ryan O; Reynolds TB
    Eukaryot Cell; 2011 Nov; 10(11):1516-26. PubMed ID: 21908597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The tRNA modification complex elongator regulates the Cdc42-dependent mitogen-activated protein kinase pathway that controls filamentous growth in yeast.
    Abdullah U; Cullen PJ
    Eukaryot Cell; 2009 Sep; 8(9):1362-72. PubMed ID: 19633267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The filamentous growth MAPK Pathway Responds to Glucose Starvation Through the Mig1/2 transcriptional repressors in Saccharomyces cerevisiae.
    Karunanithi S; Cullen PJ
    Genetics; 2012 Nov; 192(3):869-87. PubMed ID: 22904036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Opi1p transcription factor affects expression of FLO11, mat formation, and invasive growth in Saccharomyces cerevisiae.
    Reynolds TB
    Eukaryot Cell; 2006 Aug; 5(8):1266-75. PubMed ID: 16896211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The regulation of filamentous growth in yeast.
    Cullen PJ; Sprague GF
    Genetics; 2012 Jan; 190(1):23-49. PubMed ID: 22219507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mat formation in Saccharomyces cerevisiae requires nutrient and pH gradients.
    Reynolds TB; Jansen A; Peng X; Fink GR
    Eukaryot Cell; 2008 Jan; 7(1):122-30. PubMed ID: 17951523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic epistasis analysis of the contributions of protein kinase A- and mitogen-activated protein kinase-dependent signaling to nutrient limitation-evoked responses in the yeast Saccharomyces cerevisiae.
    Chen RE; Thorner J
    Genetics; 2010 Jul; 185(3):855-70. PubMed ID: 20421603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global regulation of a differentiation MAPK pathway in yeast.
    Chavel CA; Caccamise LM; Li B; Cullen PJ
    Genetics; 2014 Nov; 198(3):1309-28. PubMed ID: 25189875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Aspects of Invasive Growth Regulation Identified by Functional Profiling of MAPK Pathway Targets in
    Vandermeulen MD; Cullen PJ
    Genetics; 2020 Sep; 216(1):95-116. PubMed ID: 32665277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast.
    Nishizawa M; Komai T; Katou Y; Shirahige K; Ito T; Toh-E A
    PLoS Biol; 2008 Dec; 6(12):2817-30. PubMed ID: 19108609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae.
    Pan X; Harashima T; Heitman J
    Curr Opin Microbiol; 2000 Dec; 3(6):567-72. PubMed ID: 11121775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crosstalk between cAMP-PKA and MAP kinase pathways is a key regulatory design necessary to regulate FLO11 expression.
    Sengupta N; Vinod PK; Venkatesh KV
    Biophys Chem; 2007 Jan; 125(1):59-71. PubMed ID: 16863676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of global signaling pathways, cAMP-PKA, MAPK and TOR in the regulation of FLO11.
    Vinod PK; Sengupta N; Bhat PJ; Venkatesh KV
    PLoS One; 2008 Feb; 3(2):e1663. PubMed ID: 18301741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in pH gradients and FLO11 expression in mat biofilms from environmental isolates of the yeast Saccharomyces cerevisiae.
    Forehand AL; Myagmarsuren D; Chen Z; Murphy HA
    Microbiologyopen; 2022 Apr; 11(2):e1277. PubMed ID: 35478280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple signals converge on a differentiation MAPK pathway.
    Chavel CA; Dionne HM; Birkaya B; Joshi J; Cullen PJ
    PLoS Genet; 2010 Mar; 6(3):e1000883. PubMed ID: 20333241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.