These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22496774)

  • 1. Spatial proximity and similarity of the epigenetic state of genome domains.
    Khrameeva EE; Mironov AA; Fedonin GG; Khaitovich P; Gelfand MS
    PLoS One; 2012; 7(4):e33947. PubMed ID: 22496774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture.
    Cremer T; Kreth G; Koester H; Fink RH; Heintzmann R; Cremer M; Solovei I; Zink D; Cremer C
    Crit Rev Eukaryot Gene Expr; 2000; 10(2):179-212. PubMed ID: 11186332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of constraint in the 3D genome for trans-splicing in human cells.
    Liu C; Zhang Y; Li X; Jia Y; Li F; Li J; Zhang Z
    Sci China Life Sci; 2020 Sep; 63(9):1380-1393. PubMed ID: 32221814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Topology of chromosomes in somatic cells. Part 1].
    Zegało M; Wiland E; Kurpisz M
    Postepy Hig Med Dosw (Online); 2006; 60():331-42. PubMed ID: 16819432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic modifications in 3D: nuclear organization of the differentiating mammary epithelial cell.
    Kress C; Ballester M; Devinoy E; Rijnkels M
    J Mammary Gland Biol Neoplasia; 2010 Mar; 15(1):73-83. PubMed ID: 20143138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing 3D interaction maps from 1D epigenomes.
    Zhu Y; Chen Z; Zhang K; Wang M; Medovoy D; Whitaker JW; Ding B; Li N; Zheng L; Wang W
    Nat Commun; 2016 Mar; 7():10812. PubMed ID: 26960733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial chromatin accessibility sequencing resolves high-order spatial interactions of epigenomic markers.
    Xie Y; Ruan F; Li Y; Luo M; Zhang C; Chen Z; Xie Z; Weng Z; Chen W; Chen W; Fang Y; Sun Y; Guo M; Wang J; Xu S; Wang H; Tang C
    Elife; 2024 Jan; 12():. PubMed ID: 38236718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin domains in space and their functional implications.
    Pontvianne F; Liu C
    Curr Opin Plant Biol; 2020 Apr; 54():1-10. PubMed ID: 31881292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation and large scale spatial organization of the genome.
    Joffe B; Leonhardt H; Solovei I
    Curr Opin Genet Dev; 2010 Oct; 20(5):562-9. PubMed ID: 20561778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational approach for the functional classification of the epigenome.
    Gandolfi F; Tramontano A
    Epigenetics Chromatin; 2017; 10():26. PubMed ID: 28515787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial relationship between transcription sites and chromosome territories.
    Verschure PJ; van Der Kraan I; Manders EM; van Driel R
    J Cell Biol; 1999 Oct; 147(1):13-24. PubMed ID: 10508851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and epigenetic control of the spatial organization of the genome.
    Brickner J
    Mol Biol Cell; 2017 Feb; 28(3):364-369. PubMed ID: 28137949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct chromatin signature of histone H3 variant H3.3 in human cells.
    Snyers L; Zupkovitz G; Almeder M; Fliesser M; Stoisser A; Weipoltshammer K; Schöfer C
    Nucleus; 2014; 5(5):449-61. PubMed ID: 25482197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin organization in the mammalian nucleus.
    Gilbert N; Gilchrist S; Bickmore WA
    Int Rev Cytol; 2005; 242():283-336. PubMed ID: 15598472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection.
    Karnani N; Taylor CM; Malhotra A; Dutta A
    Mol Biol Cell; 2010 Feb; 21(3):393-404. PubMed ID: 19955211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The eukaryotic genome: a system regulated at different hierarchical levels.
    van Driel R; Fransz PF; Verschure PJ
    J Cell Sci; 2003 Oct; 116(Pt 20):4067-75. PubMed ID: 12972500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states.
    Boettiger AN; Bintu B; Moffitt JR; Wang S; Beliveau BJ; Fudenberg G; Imakaev M; Mirny LA; Wu CT; Zhuang X
    Nature; 2016 Jan; 529(7586):418-22. PubMed ID: 26760202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes.
    Westenberger SJ; Cui L; Dharia N; Winzeler E; Cui L
    BMC Genomics; 2009 Dec; 10():610. PubMed ID: 20015349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating one-dimensional and three-dimensional maps of genomes.
    Naumova N; Dekker J
    J Cell Sci; 2010 Jun; 123(Pt 12):1979-88. PubMed ID: 20519580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.