BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 22496865)

  • 1. The human operculo-insular cortex is pain-preferentially but not pain-exclusively activated by trigeminal and olfactory stimuli.
    Lötsch J; Walter C; Felden L; Nöth U; Deichmann R; Oertel BG
    PLoS One; 2012; 7(4):e34798. PubMed ID: 22496865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial segregation of somato-sensory and pain activations in the human operculo-insular cortex.
    Mazzola L; Faillenot I; Barral FG; Mauguière F; Peyron R
    Neuroimage; 2012 Mar; 60(1):409-18. PubMed ID: 22245639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central encoding of the strength of intranasal chemosensory trigeminal stimuli in a human experimental pain setting.
    Lötsch J; Oertel BG; Felden L; Nöth U; Deichmann R; Hummel T; Walter C
    Hum Brain Mapp; 2020 Dec; 41(18):5240-5254. PubMed ID: 32870583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The posterior insular-opercular cortex: An access to the brain networks of thermosensory and nociceptive processes?
    Peyron R; Fauchon C
    Neurosci Lett; 2019 May; 702():34-39. PubMed ID: 30503920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Functional brain mapping of pain perception].
    Peyron R; Faillenot I
    Med Sci (Paris); 2011 Jan; 27(1):82-7. PubMed ID: 21299967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep continuous theta burst stimulation of the operculo-insular cortex selectively affects Aδ-fibre heat pain.
    Lenoir C; Algoet M; Mouraux A
    J Physiol; 2018 Oct; 596(19):4767-4787. PubMed ID: 30085357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Functional imaging of pain].
    Peyron R
    Biol Aujourdhui; 2014; 208(1):5-12. PubMed ID: 24948014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilateral activations in operculo-insular area show temporal dissociation after peripheral electrical stimulation in healthy adults.
    Hautasaari P; Saloranta H; Savić AM; Korniloff K; Kujala UM; Tarkka IM
    Eur J Neurosci; 2020 Dec; 52(12):4604-4612. PubMed ID: 29766591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological brainstem mechanisms of trigeminal nociception: An fMRI study at 3T.
    Schulte LH; Sprenger C; May A
    Neuroimage; 2016 Jan; 124(Pt A):518-525. PubMed ID: 26388554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The primary somatosensory cortex and the insula contribute differently to the processing of transient and sustained nociceptive and non-nociceptive somatosensory inputs.
    Hu L; Zhang L; Chen R; Yu H; Li H; Mouraux A
    Hum Brain Mapp; 2015 Nov; 36(11):4346-4360. PubMed ID: 26252509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separating brain processing of pain from that of stimulus intensity.
    Oertel BG; Preibisch C; Martin T; Walter C; Gamer M; Deichmann R; Lötsch J
    Hum Brain Mapp; 2012 Apr; 33(4):883-94. PubMed ID: 21681856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new trigemino-nociceptive stimulation model for event-related fMRI.
    Stankewitz A; Voit HL; Bingel U; Peschke C; May A
    Cephalalgia; 2010 Apr; 30(4):475-85. PubMed ID: 19673914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of cerebral activation during olfactory and trigeminal stimulations.
    Lombion S; Comte A; Tatu L; Brand G; Moulin T; Millot JL
    Hum Brain Mapp; 2009 Mar; 30(3):821-8. PubMed ID: 18330871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple somatotopic representations of heat and mechanical pain in the operculo-insular cortex: a high-resolution fMRI study.
    Baumgärtner U; Iannetti GD; Zambreanu L; Stoeter P; Treede RD; Tracey I
    J Neurophysiol; 2010 Nov; 104(5):2863-72. PubMed ID: 20739597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Habitual Exposure to Trigeminal Stimuli and Its Effects on the Processing of Chemosensory Stimuli.
    Joshi A; Thaploo D; Yan X; Zang Y; Warr J; Hummel T
    Neuroscience; 2021 Aug; 470():70-77. PubMed ID: 34274425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bilateral activation of the trigeminothalamic tract by acute orofacial cutaneous and muscle pain in humans.
    Nash PG; Macefield VG; Klineberg IJ; Gustin SM; Murray GM; Henderson LA
    Pain; 2010 Nov; 151(2):384-393. PubMed ID: 20732744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neuronal correlates of intranasal trigeminal function-an ALE meta-analysis of human functional brain imaging data.
    Albrecht J; Kopietz R; Frasnelli J; Wiesmann M; Hummel T; Lundström JN
    Brain Res Rev; 2010 Mar; 62(2):183-96. PubMed ID: 19913573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interoceptive and multimodal functions of the operculo-insular cortex: tactile, nociceptive and vestibular representations.
    zu Eulenburg P; Baumgärtner U; Treede RD; Dieterich M
    Neuroimage; 2013 Dec; 83():75-86. PubMed ID: 23800791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporo-spatial analysis of cortical activation by phasic innocuous and noxious cold stimuli--a magnetoencephalographic study.
    Maihöfner C; Kaltenhäuser M; Neundörfer B; Lang E
    Pain; 2002 Dec; 100(3):281-290. PubMed ID: 12467999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The representation of experimental tooth pain from upper and lower jaws in the human trigeminal pathway.
    Weigelt A; Terekhin P; Kemppainen P; Dörfler A; Forster C
    Pain; 2010 Jun; 149(3):529-538. PubMed ID: 20382476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.