BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22496992)

  • 1. Theoretical study of the frequency shift in bimodal FM-AFM by fractional calculus.
    Herruzo ET; Garcia R
    Beilstein J Nanotechnol; 2012; 3():198-206. PubMed ID: 22496992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes.
    Kiracofe D; Raman A; Yablon D
    Beilstein J Nanotechnol; 2013; 4():385-93. PubMed ID: 23844344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of bimodal atomic force microscopy.
    Dou Z; Qian J; Li Y; Wang Z; Zhang Y; Lin R; Wang T
    Ultramicroscopy; 2020 May; 212():112971. PubMed ID: 32126474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimodal atomic force microscopy driving the higher eigenmode in frequency-modulation mode: Implementation, advantages, disadvantages and comparison to the open-loop case.
    Ebeling D; Solares SD
    Beilstein J Nanotechnol; 2013; 4():198-207. PubMed ID: 23616939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The qPlus sensor, a powerful core for the atomic force microscope.
    Giessibl FJ
    Rev Sci Instrum; 2019 Jan; 90(1):011101. PubMed ID: 30709191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air.
    Solares SD; An S; Long CJ
    Beilstein J Nanotechnol; 2014; 5():1637-48. PubMed ID: 25383276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids.
    Martínez NF; Lozano JR; Herruzo ET; Garcia F; Richter C; Sulzbach T; Garcia R
    Nanotechnology; 2008 Sep; 19(38):384011. PubMed ID: 21832570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repulsive bimodal atomic force microscopy on polymers.
    Gigler AM; Dietz C; Baumann M; Martinez NF; García R; Stark RW
    Beilstein J Nanotechnol; 2012; 3():456-63. PubMed ID: 23016150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cantilever energy effects on bimodal AFM: phase and amplitude contrast of multicomponent samples.
    Chakraborty I; Yablon DG
    Nanotechnology; 2013 Nov; 24(47):475706. PubMed ID: 24177059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination of adhesion and viscoelasticity from nanoscale maps of polymer surfaces using bimodal atomic force microscopy.
    Rajabifar B; Bajaj A; Reifenberger R; Proksch R; Raman A
    Nanoscale; 2021 Oct; 13(41):17428-17441. PubMed ID: 34647552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual frequency atomic force microscopy on charged surfaces.
    Baumann M; Stark RW
    Ultramicroscopy; 2010 May; 110(6):578-81. PubMed ID: 20227181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Method to Reconstruct the Force Curve by Higher Harmonics of the First Two Flexural Modes in Frequency Modulation Atomic Force Microscope (FM-AFM).
    Zhang S; Qian J; Li Y; Zhang Y; Wang Z
    Microsc Microanal; 2018 Jun; 24(3):256-263. PubMed ID: 29860955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy.
    Nikfarjam M; López-Guerra EA; Solares SD; Eslami B
    Beilstein J Nanotechnol; 2018; 9():1116-1122. PubMed ID: 29719762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing the distributed force on an atomic force microscope cantilever.
    Wagner R; Killgore J
    Nanotechnology; 2017 Mar; 28(10):104002. PubMed ID: 28085006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and high-resolution mapping of elastic properties of biomolecules and polymers with bimodal AFM.
    Benaglia S; Gisbert VG; Perrino AP; Amo CA; Garcia R
    Nat Protoc; 2018 Dec; 13(12):2890-2907. PubMed ID: 30446750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of the excitation frequency for high probe sensitivity in single-eigenmode and bimodal tapping-mode AFM.
    Eslami B; López-Guerra EA; Diaz AJ; Solares SD
    Nanotechnology; 2015 Apr; 26(16):165703. PubMed ID: 25825001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalized Hertz model for bimodal nanomechanical mapping.
    Labuda A; Kocuń M; Meinhold W; Walters D; Proksch R
    Beilstein J Nanotechnol; 2016; 7():970-82. PubMed ID: 27547614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical method to limit tip-sample contact stress and prevent wear in amplitude modulation atomic force microscopy.
    Vahdat V; Carpick RW
    ACS Nano; 2013 Nov; 7(11):9836-50. PubMed ID: 24131354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trade-offs in sensitivity and sampling depth in bimodal atomic force microscopy and comparison to the trimodal case.
    Eslami B; Ebeling D; Solares SD
    Beilstein J Nanotechnol; 2014; 5():1144-51. PubMed ID: 25161847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of V-shaped cantilevers for enhanced multifrequency AFM measurements.
    Damircheli M; Eslami B
    Beilstein J Nanotechnol; 2020; 11():1525-1541. PubMed ID: 33094086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.