These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22497011)

  • 1. Pseudorotaxanes from self-assembly of two crown ether-based cryptands and a 1,2-bis(pyridinium) ethane derivative.
    Yan X; Wei P; Xia B; Huang F; Zhou Q
    Chem Commun (Camb); 2012 May; 48(41):4968-70. PubMed ID: 22497011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [2]Rotaxanes containing pyridinium-phosphonium axles and 24-crown-8 ether wheels.
    Georges N; Loeb SJ; Tiburcio J; Wisner JA
    Org Biomol Chem; 2004 Oct; 2(19):2751-6. PubMed ID: 15455146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Motif for the Self-Assembly of [2]Pseudorotaxanes; 1,2-Bis(pyridinium)ethane Axles and [24]Crown-8 Ether Wheels.
    Loeb SJ; Wisner JA
    Angew Chem Int Ed Engl; 1998 Nov; 37(20):2838-2840. PubMed ID: 29711121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A versatile template for the formation of [2]pseudorotaxanes. 1,2-Bis(pyridinium)ethane axles and 24-crown-8 ether wheels.
    Loeb SJ; Tiburcio J; Vella SJ; Wisner JA
    Org Biomol Chem; 2006 Feb; 4(4):667-80. PubMed ID: 16467941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isomeric 2,6-pyridino-cryptands based on dibenzo-24-crown-8.
    Gibson HW; Wang H; Slebodnick C; Merola J; Kassel WS; Rheingold AL
    J Org Chem; 2007 Apr; 72(9):3381-93. PubMed ID: 17385921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Branched [n]rotaxanes (n = 2-4) from multiple dibenzo-24-crown-8 ether wheels and 1,2-bis(4,4'-dipyridinium)ethane axles.
    Loeb SJ; Tramontozzi DA
    Org Biomol Chem; 2005 Apr; 3(8):1393-401. PubMed ID: 15827634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [2]Pseudorotaxanes based on the recognition of cryptands to vinylogous viologens.
    Yan X; Wei P; Zhang M; Chi X; Liu J; Huang F
    Org Lett; 2011 Dec; 13(24):6370-3. PubMed ID: 22077161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [2]pseudorotaxane formation with N-benzylanilinium axles and 24-crown-8 ether wheels.
    Loeb SJ; Tiburcio J; Vella SJ
    Org Lett; 2005 Oct; 7(22):4923-6. PubMed ID: 16235923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Push-pull [2]pseudorotaxanes. Electronic control of threading by switching ON/OFF an intramolecular charge transfer.
    Vella SJ; Tiburcio J; Gauld JW; Loeb SJ
    Org Lett; 2006 Aug; 8(16):3421-4. PubMed ID: 16869625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotaxanes as ligands: from molecules to materials.
    Loeb SJ
    Chem Soc Rev; 2007 Feb; 36(2):226-35. PubMed ID: 17264925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-organic rotaxane frameworks; MORFs.
    Loeb SJ
    Chem Commun (Camb); 2005 Mar; (12):1511-8. PubMed ID: 15770244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved complexation of paraquat derivatives by the formation of crown ether-based cryptands.
    Zhang M; Zhu K; Huang F
    Chem Commun (Camb); 2010 Nov; 46(43):8131-41. PubMed ID: 20830438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular AA-BB-type linear polymers with relatively high molecular weights via the self-assembly of bis(m-phenylene)-32-crown-10 cryptands and a bisparaquat derivative.
    Niu Z; Huang F; Gibson HW
    J Am Chem Soc; 2011 Mar; 133(9):2836-9. PubMed ID: 21309571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chromophoric switch based on pseudorotaxanes.
    Liu Y; Li CJ; Zhang HY; Wang LH; Luo Q; Wang G
    J Chem Phys; 2007 Feb; 126(6):064705. PubMed ID: 17313236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Yielding Syntheses of Crown Ether-Based Pyridyl Cryptands.
    Price TL; Wessels HR; Slebodnick C; Gibson HW
    J Org Chem; 2017 Aug; 82(15):8117-8122. PubMed ID: 28714310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bis(m-phenylene)-32-crown-10-based cryptands, powerful hosts for paraquat derivatives.
    Huang F; Switek KA; Zakharov LN; Fronczek FR; Slebodnick C; Lam M; Golen JA; Bryant WS; Mason PE; Rheingold AL; Ashraf-Khorassani M; Gibson HW
    J Org Chem; 2005 Apr; 70(8):3231-41. PubMed ID: 15822986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemically controlled self-assembly of [2]pseudorotaxanes based on 1,2-bis(benzimidazolium)ethane cations and 24-crown-8 macrocycles.
    Castillo D; Astudillo P; Mares J; González FJ; Vela A; Tiburcio J
    Org Biomol Chem; 2007 Jul; 5(14):2252-6. PubMed ID: 17609756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-yield preparation of [2]rotaxanes based on the bis(m-phenylene)-32-crown-10-based cryptand/paraquat derivative recognition motif.
    Li S; Liu M; Zhang J; Zheng B; Zhang C; Wen X; Li N; Huang F
    Org Biomol Chem; 2008 Jun; 6(12):2103-7. PubMed ID: 18528572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrasting biscryptand/dimethyl paraquat [3]pseudorotaxanes: statistical vs. anticooperative complexation behavior.
    Niu Z; Gibson HW
    Org Biomol Chem; 2011 Oct; 9(20):6909-12. PubMed ID: 21870005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular side-chain poly[2]pseudorotaxanes formed by orthogonal coordination-driven self-assembly and crown-ether-based host-guest interactions.
    Xing H; Wei P; Yan X
    Org Lett; 2014 Jun; 16(11):2850-3. PubMed ID: 24819441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.