These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 22497139)
1. [Intermolecular hydrogen bond between protein and flavonoid and its contribution to the stability of the flavonoids]. Fang R; Leng XJ; Wu X; Li Q; Hao RF; Ren FZ; Jing H Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jan; 32(1):108-12. PubMed ID: 22497139 [TBL] [Abstract][Full Text] [Related]
2. Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. Papadopoulou A; Green RJ; Frazier RA J Agric Food Chem; 2005 Jan; 53(1):158-63. PubMed ID: 15631523 [TBL] [Abstract][Full Text] [Related]
3. Design and characterization of protein-quercetin bioactive nanoparticles. Fang R; Jing H; Chai Z; Zhao G; Stoll S; Ren F; Liu F; Leng X J Nanobiotechnology; 2011 May; 9():19. PubMed ID: 21586116 [TBL] [Abstract][Full Text] [Related]
4. Poziotinib and bovine serum albumin binding characterization and influence of quercetin, rutin, naringenin and sinapic acid on their binding interaction. Zargar S; Alamery S; Bakheit AH; Wani TA Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jul; 235():118335. PubMed ID: 32278151 [TBL] [Abstract][Full Text] [Related]
5. Effect of Zinc (II) on the interactions of bovine serum albumin with flavonols bearing different number of hydroxyl substituent on B-ring. Cao S; Jiang X; Chen J J Inorg Biochem; 2010 Feb; 104(2):146-52. PubMed ID: 19932510 [TBL] [Abstract][Full Text] [Related]
6. Structural relationship and binding mechanisms of five flavonoids with bovine serum albumin. Liu EH; Qi LW; Li P Molecules; 2010 Dec; 15(12):9092-103. PubMed ID: 21150826 [TBL] [Abstract][Full Text] [Related]
7. Protections of bovine serum albumin protein from damage on functionalized graphene-based electrodes by flavonoids. Sun B; Gou Y; Xue Z; Zheng X; Ma Y; Hu F; Zhao W Mater Sci Eng C Mater Biol Appl; 2016 May; 62():197-205. PubMed ID: 26952415 [TBL] [Abstract][Full Text] [Related]
8. Specific interactions of quercetin and other flavonoids with target proteins are revealed by elicited fluorescence. Gutzeit HO; Henker Y; Kind B; Franz A Biochem Biophys Res Commun; 2004 May; 318(2):490-5. PubMed ID: 15120627 [TBL] [Abstract][Full Text] [Related]
9. Combined spectroscopies and molecular docking approach to characterizing the binding interaction of enalapril with bovine serum albumin. Pan DQ; Jiang M; Liu TT; Wang Q; Shi JH Luminescence; 2017 Jun; 32(4):481-490. PubMed ID: 27550396 [TBL] [Abstract][Full Text] [Related]
10. Bovine Serum Albumin as a Potential Carrier for the Protection of Bioactive Quercetin and Inhibition of Cu(II) Toxicity. Zhou L; Lu N; Pi X; Jin Z; Tian R Chem Res Toxicol; 2022 Mar; 35(3):529-537. PubMed ID: 35175047 [TBL] [Abstract][Full Text] [Related]
11. Study the interactions between multiple flavonoids and bovine serum albumin by the developed equilibrium dialysis. Tian Y; Li C; Zeng F; Yu C; Xia Z; Huang Y J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Dec; 1212():123515. PubMed ID: 36308942 [TBL] [Abstract][Full Text] [Related]
12. Spectroscopic and molecular docking approaches for investigating conformation and binding characteristics of clonazepam with bovine serum albumin (BSA). Lou YY; Zhou KL; Pan DQ; Shen JL; Shi JH J Photochem Photobiol B; 2017 Feb; 167():158-167. PubMed ID: 28068610 [TBL] [Abstract][Full Text] [Related]
13. The effect of Cu2+ on interaction between flavonoids with different C-ring substituents and bovine serum albumin: structure-affinity relationship aspect. Zhang Y; Shi S; Sun X; Xiong X; Peng M J Inorg Biochem; 2011 Dec; 105(12):1529-37. PubMed ID: 22071075 [TBL] [Abstract][Full Text] [Related]
14. Serum albumin acted as an effective carrier to improve the stability of bioactive flavonoid. Yang YD; Lu N; Tian R Amino Acids; 2023 Dec; 55(12):1879-1890. PubMed ID: 37856004 [TBL] [Abstract][Full Text] [Related]
15. Study transport of hesperidin based on the DPPC lipid model and the BSA transport model. Zhuang H; Zhang X; Wu S; Mao C; Dai Y; Yong P; Niu X Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jun; 314():124172. PubMed ID: 38513316 [TBL] [Abstract][Full Text] [Related]
16. Characterization of interactions of simvastatin, pravastatin, fluvastatin, and pitavastatin with bovine serum albumin: multiple spectroscopic and molecular docking. Shi JH; Wang Q; Pan DQ; Liu TT; Jiang M J Biomol Struct Dyn; 2017 May; 35(7):1529-1546. PubMed ID: 27484332 [TBL] [Abstract][Full Text] [Related]
17. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods. Bardajee GR; Hooshyar Z Mater Sci Eng C Mater Biol Appl; 2016 May; 62():806-15. PubMed ID: 26952487 [TBL] [Abstract][Full Text] [Related]
18. Deciphering the binding patterns and conformation changes upon the bovine serum albumin-rosmarinic acid complex. Peng X; Wang X; Qi W; Huang R; Su R; He Z Food Funct; 2015 Aug; 6(8):2712-26. PubMed ID: 26146359 [TBL] [Abstract][Full Text] [Related]
19. Molecular recognition of bio-active flavonoids quercetin and rutin by bovine hemoglobin: an overview of the binding mechanism, thermodynamics and structural aspects through multi-spectroscopic and molecular dynamics simulation studies. Das S; Bora N; Rohman MA; Sharma R; Jha AN; Singha Roy A Phys Chem Chem Phys; 2018 Aug; 20(33):21668-21684. PubMed ID: 30101248 [TBL] [Abstract][Full Text] [Related]
20. Generation of a Diligand Complex of Bovine Serum Albumin with Quercetin and Carbon Nanotubes for the Protection of Bioactive Quercetin and Reduction of Cytotoxicity. Lu N; Sui Y; Zeng L; Tian R; Peng YY J Agric Food Chem; 2018 Aug; 66(31):8355-8362. PubMed ID: 30016096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]