These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 22497204)

  • 1. One-step synthesis and self-assembly of metal oxide nanoparticles into 3D superlattices.
    Pucci A; Willinger MG; Liu F; Zeng X; Rebuttini V; Clavel G; Bai X; Ungar G; Pinna N
    ACS Nano; 2012 May; 6(5):4382-91. PubMed ID: 22497204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion-Mediated Nucleation and Growth of fcc and bcc Nanocrystal Superlattices with Designable Assembly of Freestanding 3D Supercrystals.
    Huang X; Suit E; Zhu J; Ge B; Gerdes F; Klinke C; Wang Z
    J Am Chem Soc; 2023 Mar; 145(8):4500-4507. PubMed ID: 36787491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of diverse supercrystals from self-assembly of a variety of polyhedral gold nanocrystals.
    Liao CW; Lin YS; Chanda K; Song YF; Huang MH
    J Am Chem Soc; 2013 Feb; 135(7):2684-93. PubMed ID: 23394452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bottom-up assembly of colloidal gold and silver nanostructures for designable plasmonic structures and metamaterials.
    Gwo S; Lin MH; He CL; Chen HY; Teranishi T
    Langmuir; 2012 Jun; 28(24):8902-8. PubMed ID: 22372768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Supercrystals.
    García-Lojo D; Núñez-Sánchez S; Gómez-Graña S; Grzelczak M; Pastoriza-Santos I; Pérez-Juste J; Liz-Marzán LM
    Acc Chem Res; 2019 Jul; 52(7):1855-1864. PubMed ID: 31243968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled growth and shape-directed self-assembly of gold nanoarrows.
    Wang Q; Wang Z; Li Z; Xiao J; Shan H; Fang Z; Qi L
    Sci Adv; 2017 Oct; 3(10):e1701183. PubMed ID: 29098180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D quantitative analysis of platinum nanocrystal superlattices by electron tomography.
    Florea I; Demortière A; Petit C; Bulou H; Hirlimann C; Ersen O
    ACS Nano; 2012 Mar; 6(3):2574-81. PubMed ID: 22335360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly ordered superlattices from polydisperse Ag nanoparticles: a comparative study of fractionation and self-correction.
    Yang Y; Kimura K
    J Phys Chem B; 2006 Dec; 110(48):24442-9. PubMed ID: 17134199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supercrystal structures of polyhedral PbS nanocrystals.
    Zhao Z; Zhang J; Dong F; Yang B
    J Colloid Interface Sci; 2011 Jul; 359(2):351-8. PubMed ID: 21543083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice.
    Zhuang Z; Peng Q; Zhang B; Li Y
    J Am Chem Soc; 2008 Aug; 130(32):10482-3. PubMed ID: 18636712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and in situ observation of 3D superlattices of gold nanoparticles using oil-in-water emulsion.
    Dutta A; Chakraborty J; Prasad BL; Sahu P
    J Colloid Interface Sci; 2014 Apr; 420():41-9. PubMed ID: 24559698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation.
    Smetana AB; Klabunde KJ; Sorensen CM
    J Colloid Interface Sci; 2005 Apr; 284(2):521-6. PubMed ID: 15780291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures.
    Wu HL; Kuo CH; Huang MH
    Langmuir; 2010 Jul; 26(14):12307-13. PubMed ID: 20557088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled synthesis and self-assembly of highly monodisperse Ag and Ag(2)S nanocrystals.
    Li P; Peng Q; Li Y
    Chemistry; 2011 Jan; 17(3):941-6. PubMed ID: 21226111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of highly ordered nanostructures by drying micrometer colloidal droplets.
    Lee SY; Gradon L; Janeczko S; Iskandar F; Okuyama K
    ACS Nano; 2010 Aug; 4(8):4717-24. PubMed ID: 20731450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Top-down approaches to the formation of silica nanoparticle patterns.
    Xia D; Li D; Ku Z; Luo Y; Brueck SR
    Langmuir; 2007 May; 23(10):5377-85. PubMed ID: 17425349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of polyoxometalate macroanion-capped pd0 nanoparticles in aqueous solution.
    Zhang J; Keita B; Nadjo L; Mbomekalle IM; Liu T
    Langmuir; 2008 May; 24(10):5277-83. PubMed ID: 18439035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization and self-assembly into superlattices of iron oxide-gold core-shell nanoparticles synthesized via a high-temperature organometallic route.
    Chiang IC; Chen DH
    Nanotechnology; 2009 Jan; 20(1):015602. PubMed ID: 19417256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.