These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 22497441)
1. Comparative analysis of caffeoylquinic acids and lignans in roots and seeds among various burdock (Arctium lappa) genotypes with high antioxidant activity. Liu J; Cai YZ; Wong RN; Lee CK; Tang SC; Sze SC; Tong Y; Zhang Y J Agric Food Chem; 2012 Apr; 60(16):4067-75. PubMed ID: 22497441 [TBL] [Abstract][Full Text] [Related]
2. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. Ferracane R; Graziani G; Gallo M; Fogliano V; Ritieni A J Pharm Biomed Anal; 2010 Jan; 51(2):399-404. PubMed ID: 19375261 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterization of five new classes of chlorogenic acids in burdock (Arctium lappa L.) roots by liquid chromatography/tandem mass spectrometry. Jaiswal R; Kuhnert N Food Funct; 2011 Jan; 2(1):63-71. PubMed ID: 21773587 [TBL] [Abstract][Full Text] [Related]
4. Semi-Preparative Separation of 10 Caffeoylquinic Acid Derivatives Using High Speed Counter-Current Chromatogaphy Combined with Semi-Preparative HPLC from the Roots of Burdock (Arctium lappa L.). Zheng Z; Wang X; Liu P; Li M; Dong H; Qiao X Molecules; 2018 Feb; 23(2):. PubMed ID: 29462864 [TBL] [Abstract][Full Text] [Related]
5. Identification of hydroxycinnamoylquinic acids of arnica flowers and burdock roots using a standardized LC-DAD-ESI/MS profiling method. Lin LZ; Harnly JM J Agric Food Chem; 2008 Nov; 56(21):10105-14. PubMed ID: 18837557 [TBL] [Abstract][Full Text] [Related]
6. Effect of in vitro gastro-intestinal digestion on the phenolic composition and antioxidant capacity of Burdock roots at different harvest time. Herrera-Balandrano DD; Beta T; Chai Z; Zhang X; Li Y; Huang W Food Chem; 2021 Oct; 358():129897. PubMed ID: 33915426 [TBL] [Abstract][Full Text] [Related]
7. Anthocyanins, hydroxycinnamic acid derivatives, and antioxidant activity in roots of different chinese purple-fleshed sweetpotato genotypes. Zhu F; Cai YZ; Yang X; Ke J; Corke H J Agric Food Chem; 2010 Jul; 58(13):7588-96. PubMed ID: 20524661 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Metabolic Profiles of Fruits of Arctium lappa, Arctium minus, and Arctium tomentosum. Malaník M; Farková V; Křížová J; Kresová A; Šmejkal K; Kašparovský T; Dadáková K Plant Foods Hum Nutr; 2024 Jun; 79(2):497-502. PubMed ID: 38589624 [TBL] [Abstract][Full Text] [Related]
9. UPLC and HPLC of caffeoyl esters in wild and cultivated Arctium lappa L. Haghi G; Hatami A; Mehran M Food Chem; 2013 May; 138(1):321-6. PubMed ID: 23265494 [TBL] [Abstract][Full Text] [Related]
10. Chemical analysis and antihyperglycemic activity of an original extract from burdock root (Arctium lappa). Tousch D; Bidel LP; Cazals G; Ferrare K; Leroy J; Faucanié M; Chevassus H; Tournier M; Lajoix AD; Azay-Milhau J J Agric Food Chem; 2014 Aug; 62(31):7738-45. PubMed ID: 24933284 [TBL] [Abstract][Full Text] [Related]
11. Isolation and identification of arctiin and arctigenin in leaves of burdock (Arctium lappa L.) by polyamide column chromatography in combination with HPLC-ESI/MS. Liu S; Chen K; Schliemann W; Strack D Phytochem Anal; 2005; 16(2):86-9. PubMed ID: 15881114 [TBL] [Abstract][Full Text] [Related]
12. Isolation, structure elucidation and neuroprotective effects of caffeoylquinic acid derivatives from the roots of Arctium lappa L. Gao H; Jiang XW; Yang Y; Liu WW; Xu ZH; Zhao QC Phytochemistry; 2020 Sep; 177():112432. PubMed ID: 32562918 [TBL] [Abstract][Full Text] [Related]
13. Burdock (Arctium lappa L) roots as a source of inulin-type fructans and other bioactive compounds: Current knowledge and future perspectives for food and non-food applications. Moro TMA; T P S Clerici M Food Res Int; 2021 Mar; 141():109889. PubMed ID: 33641945 [TBL] [Abstract][Full Text] [Related]
14. Burdock (Arctium lappa L.) root attenuates preneoplastic lesion development in a diet and thioacetamide-induced model of steatohepatitis-associated hepatocarcinogenesis. Romualdo GR; Silva EDA; Da Silva TC; Aloia TPA; Nogueira MS; De Castro IA; Vinken M; Barbisan LF; Cogliati B Environ Toxicol; 2020 Apr; 35(4):518-527. PubMed ID: 31804025 [TBL] [Abstract][Full Text] [Related]
15. HPLC-UV and LC-MS Analyses of Acylquinic Acids in Geigeria alata (DC) Oliv. & Hiern. and their Contribution to Antioxidant and Antimicrobial Capacity. Zheleva-Dimitrova D; Gevrenova R; Zaharieva MM; Najdenski H; Ruseva S; Lozanov V; Balabanova V; Yagi S; Momekov G; Mitev V Phytochem Anal; 2017 May; 28(3):176-184. PubMed ID: 27910164 [TBL] [Abstract][Full Text] [Related]
16. Content of antioxidative caffeoylquinic acid derivatives in field-grown Ligularia fischeri (Ledeb.) Turcz and responses to sunlight. Kim SM; Jeon JS; Kang SW; Jung YJ; Ly LN; Um BH J Agric Food Chem; 2012 Jun; 60(22):5597-603. PubMed ID: 22583553 [TBL] [Abstract][Full Text] [Related]
17. Optimum yields of dibenzylbutyrolactone-type lignans from Cynareae fruits, during their ripening, germination and enzymatic hydrolysis processes, determined by on-line chromatographic methods. Szokol-Borsodi L; Sólyomváry A; Molnár-Perl I; Boldizsár I Phytochem Anal; 2012; 23(6):598-603. PubMed ID: 22396124 [TBL] [Abstract][Full Text] [Related]
18. Effects of aqueous extract of Arctium lappa L. roots on serum lipid metabolism. Hou B; Wang W; Gao H; Cai S; Wang C J Int Med Res; 2018 Jan; 46(1):158-167. PubMed ID: 28758851 [TBL] [Abstract][Full Text] [Related]
19. Antioxidant activity and chemical composition of the fractions from burdock leaves. Lou Z; Wang H; Li J; Chen S; Zhu S; Ma C; Wang Z J Food Sci; 2010 Jun; 75(5):C413-9. PubMed ID: 20629861 [TBL] [Abstract][Full Text] [Related]
20. A new lignan from the seeds of Arctium lappa. Yong M; Kun G; Qiu MH J Asian Nat Prod Res; 2007; 9(6-8):541-4. PubMed ID: 17885842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]