These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 22497856)
1. Membrane and lipopolysaccharide interactions of C-terminal peptides from S1 peptidases. Singh S; Kasetty G; Schmidtchen A; Malmsten M Biochim Biophys Acta; 2012 Sep; 1818(9):2244-51. PubMed ID: 22497856 [TBL] [Abstract][Full Text] [Related]
2. Lipopolysaccharide interactions of C-terminal peptides from human thrombin. Singh S; Kalle M; Papareddy P; Schmidtchen A; Malmsten M Biomacromolecules; 2013 May; 14(5):1482-92. PubMed ID: 23537377 [TBL] [Abstract][Full Text] [Related]
3. Importance of lipopolysaccharide aggregate disruption for the anti-endotoxic effects of heparin cofactor II peptides. Singh S; Papareddy P; Kalle M; Schmidtchen A; Malmsten M Biochim Biophys Acta; 2013 Nov; 1828(11):2709-19. PubMed ID: 23806651 [TBL] [Abstract][Full Text] [Related]
4. Lipopolysaccharide interaction is decisive for the activity of the antimicrobial peptide NK-2 against Escherichia coli and Proteus mirabilis. Hammer MU; Brauser A; Olak C; Brezesinski G; Goldmann T; Gutsmann T; Andrä J Biochem J; 2010 Apr; 427(3):477-88. PubMed ID: 20187872 [TBL] [Abstract][Full Text] [Related]
5. Structure, activity and interactions of the cysteine deleted analog of tachyplesin-1 with lipopolysaccharide micelle: Mechanistic insights into outer-membrane permeabilization and endotoxin neutralization. Saravanan R; Mohanram H; Joshi M; Domadia PN; Torres J; Ruedl C; Bhattacharjya S Biochim Biophys Acta; 2012 Jul; 1818(7):1613-24. PubMed ID: 22464970 [TBL] [Abstract][Full Text] [Related]
7. Structure, interactions, and antibacterial activities of MSI-594 derived mutant peptide MSI-594F5A in lipopolysaccharide micelles: role of the helical hairpin conformation in outer-membrane permeabilization. Domadia PN; Bhunia A; Ramamoorthy A; Bhattacharjya S J Am Chem Soc; 2010 Dec; 132(51):18417-28. PubMed ID: 21128620 [TBL] [Abstract][Full Text] [Related]
8. Correlation of charge, hydrophobicity, and structure with antimicrobial activity of S1 and MIRIAM peptides. Leptihn S; Har JY; Wohland T; Ding JL Biochemistry; 2010 Nov; 49(43):9161-70. PubMed ID: 20873868 [TBL] [Abstract][Full Text] [Related]
9. Interactions between chensinin-1, a natural antimicrobial peptide derived from Rana chensinensis, and lipopolysaccharide. Dong W; Sun Y; Shang D Biopolymers; 2015 Dec; 103(12):719-26. PubMed ID: 26340228 [TBL] [Abstract][Full Text] [Related]
10. Cyclic antimicrobial R-, W-rich peptides: the role of peptide structure and E. coli outer and inner membranes in activity and the mode of action. Junkes C; Harvey RD; Bruce KD; Dölling R; Bagheri M; Dathe M Eur Biophys J; 2011 Apr; 40(4):515-28. PubMed ID: 21286704 [TBL] [Abstract][Full Text] [Related]
11. Interaction of polyphemusin I and structural analogs with bacterial membranes, lipopolysaccharide, and lipid monolayers. Zhang L; Scott MG; Yan H; Mayer LD; Hancock RE Biochemistry; 2000 Nov; 39(47):14504-14. PubMed ID: 11087404 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, characterization, antimicrobial activity and LPS-interaction properties of SB041, a novel dendrimeric peptide with antimicrobial properties. Bruschi M; Pirri G; Giuliani A; Nicoletto SF; Baster I; Scorciapino MA; Casu M; Rinaldi AC Peptides; 2010 Aug; 31(8):1459-67. PubMed ID: 20438783 [TBL] [Abstract][Full Text] [Related]
13. Effects of peptide hydrophobicity on its incorporation in phospholipid membranes--an NMR and ellipsometry study. Orädd G; Schmidtchen A; Malmsten M Biochim Biophys Acta; 2011 Jan; 1808(1):244-52. PubMed ID: 20801096 [TBL] [Abstract][Full Text] [Related]
14. Oligotryptophan-tagged antimicrobial peptides and the role of the cationic sequence. Strömstedt AA; Pasupuleti M; Schmidtchen A; Malmsten M Biochim Biophys Acta; 2009 Sep; 1788(9):1916-23. PubMed ID: 19505433 [TBL] [Abstract][Full Text] [Related]
15. Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions. Vanhoye D; Bruston F; El Amri S; Ladram A; Amiche M; Nicolas P Biochemistry; 2004 Jul; 43(26):8391-409. PubMed ID: 15222751 [TBL] [Abstract][Full Text] [Related]
16. Spectroscopic investigations of the binding mechanisms between antimicrobial peptides and membrane models of Pseudomonas aeruginosa and Klebsiella pneumoniae. Chai H; Allen WE; Hicks RP Bioorg Med Chem; 2014 Aug; 22(15):4210-22. PubMed ID: 24931276 [TBL] [Abstract][Full Text] [Related]
17. The effects of LPS on the activity of Trp-containing antimicrobial peptides against Gram-negative bacteria and endotoxin neutralization. Shang D; Zhang Q; Dong W; Liang H; Bi X Acta Biomater; 2016 Mar; 33():153-65. PubMed ID: 26804205 [TBL] [Abstract][Full Text] [Related]
18. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Wieprecht T; Dathe M; Beyermann M; Krause E; Maloy WL; MacDonald DL; Bienert M Biochemistry; 1997 May; 36(20):6124-32. PubMed ID: 9166783 [TBL] [Abstract][Full Text] [Related]
19. Effects of arginine and leucine substitutions on anti-endotoxic activities and mechanisms of action of cationic and amphipathic antimicrobial octadecapeptide from rice α-amylase. Taniguchi M; Ochiai A; Toyoda R; Sato T; Saitoh E; Kato T; Tanaka T J Pept Sci; 2017 Mar; 23(3):252-260. PubMed ID: 28185358 [TBL] [Abstract][Full Text] [Related]
20. Designed low amphipathic peptides with alpha-helical propensity exhibiting antimicrobial activity via a lipid domain formation mechanism. Yamamoto N; Tamura A Peptides; 2010 May; 31(5):794-805. PubMed ID: 20109510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]