These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
445 related articles for article (PubMed ID: 22498281)
41. The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting. Stamp R; Fox P; O'Neill W; Jones E; Sutcliffe C J Mater Sci Mater Med; 2009 Sep; 20(9):1839-48. PubMed ID: 19536640 [TBL] [Abstract][Full Text] [Related]
42. Effects of pore size and porosity on cytocompatibility and osteogenic differentiation of porous titanium. Yao YT; Yang Y; Ye Q; Cao SS; Zhang XP; Zhao K; Jian Y J Mater Sci Mater Med; 2021 Jun; 32(6):72. PubMed ID: 34125310 [TBL] [Abstract][Full Text] [Related]
43. Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: Trabecular titanium. Marin E; Fusi S; Pressacco M; Paussa L; Fedrizzi L J Mech Behav Biomed Mater; 2010 Jul; 3(5):373-81. PubMed ID: 20416551 [TBL] [Abstract][Full Text] [Related]
44. Mechanical properties and in vitro biological response to porous titanium alloys prepared for use in intervertebral implants. Caparrós C; Guillem-Martí J; Molmeneu M; Punset M; Calero JA; Gil FJ J Mech Behav Biomed Mater; 2014 Nov; 39():79-86. PubMed ID: 25108271 [TBL] [Abstract][Full Text] [Related]
45. Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques. Torres Y; Lascano S; Bris J; Pavón J; Rodriguez JA Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():148-55. PubMed ID: 24582234 [TBL] [Abstract][Full Text] [Related]
46. The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting. Habijan T; Haberland C; Meier H; Frenzel J; Wittsiepe J; Wuwer C; Greulich C; Schildhauer TA; Köller M Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):419-26. PubMed ID: 25428090 [TBL] [Abstract][Full Text] [Related]
47. Bioactive porous titanium: an alternative to surgical implants. de Medeiros WS; de Oliveira MV; Pereira LC; de Andrade MC Artif Organs; 2008 Apr; 32(4):277-82. PubMed ID: 18370941 [TBL] [Abstract][Full Text] [Related]
48. Evaluation of the mechanical compatibility of additively manufactured porous Ti-25Ta alloy for load-bearing implant applications. Soro N; Attar H; Brodie E; Veidt M; Molotnikov A; Dargusch MS J Mech Behav Biomed Mater; 2019 Sep; 97():149-158. PubMed ID: 31121433 [TBL] [Abstract][Full Text] [Related]
49. Compression fatigue behavior of laser processed porous NiTi alloy. Bernard S; Krishna Balla V; Bose S; Bandyopadhyay A J Mech Behav Biomed Mater; 2012 Sep; 13():62-8. PubMed ID: 22842276 [TBL] [Abstract][Full Text] [Related]
50. An integrated approach of topology optimized design and selective laser melting process for titanium implants materials. Xiao D; Yang Y; Su X; Wang D; Sun J Biomed Mater Eng; 2013; 23(5):433-45. PubMed ID: 23988713 [TBL] [Abstract][Full Text] [Related]
52. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Heinl P; Müller L; Körner C; Singer RF; Müller FA Acta Biomater; 2008 Sep; 4(5):1536-44. PubMed ID: 18467197 [TBL] [Abstract][Full Text] [Related]
53. Partial Bone Formation in Additive Manufactured Porous Implants Reduces Predicted Stress and Danger of Fatigue Failure. Cheong VS; Fromme P; Coathup MJ; Mumith A; Blunn GW Ann Biomed Eng; 2020 Jan; 48(1):502-514. PubMed ID: 31549330 [TBL] [Abstract][Full Text] [Related]
54. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments. Pattanayak DK; Fukuda A; Matsushita T; Takemoto M; Fujibayashi S; Sasaki K; Nishida N; Nakamura T; Kokubo T Acta Biomater; 2011 Mar; 7(3):1398-406. PubMed ID: 20883832 [TBL] [Abstract][Full Text] [Related]
55. Microstructure and mechanical properties of porous titanium structures fabricated by electron beam melting for cranial implants. Moiduddin K Proc Inst Mech Eng H; 2018 Feb; 232(2):185-199. PubMed ID: 29332500 [TBL] [Abstract][Full Text] [Related]
56. Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: a histological and micro computed tomography study in the rabbit. de Wild M; Schumacher R; Mayer K; Schkommodau E; Thoma D; Bredell M; Kruse Gujer A; Grätz KW; Weber FE Tissue Eng Part A; 2013 Dec; 19(23-24):2645-54. PubMed ID: 23895118 [TBL] [Abstract][Full Text] [Related]
57. Preparation and properties of porous Ti-10Mo alloy by selective laser sintering. Xie F; He X; Lu X; Cao S; Qu X Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1085-90. PubMed ID: 23827546 [TBL] [Abstract][Full Text] [Related]
58. Bone growth in rapid prototyped porous titanium implants. Lopez-Heredia MA; Goyenvalle E; Aguado E; Pilet P; Leroux C; Dorget M; Weiss P; Layrolle P J Biomed Mater Res A; 2008 Jun; 85(3):664-73. PubMed ID: 17876801 [TBL] [Abstract][Full Text] [Related]
59. On the mechanical stability of porous coated press fit titanium implants: a finite element study of a pushout test. Helgason B; Viceconti M; Rúnarsson TP; Brynjólfsson S J Biomech; 2008; 41(8):1675-81. PubMed ID: 18471819 [TBL] [Abstract][Full Text] [Related]
60. Mechanical properties tailoring of topology optimized and selective laser melting fabricated Ti6Al4V lattice structure. Xu Y; Zhang D; Hu S; Chen R; Gu Y; Kong X; Tao J; Jiang Y J Mech Behav Biomed Mater; 2019 Nov; 99():225-239. PubMed ID: 31400657 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]