BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22498352)

  • 1. Comparison of various ternary simulated moving bed separation schemes by multi-objective optimization.
    Agrawal G; Kawajiri Y
    J Chromatogr A; 2012 May; 1238():105-13. PubMed ID: 22498352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic optimization and experimental validation of ternary simulated moving bed chromatography systems.
    Agrawal G; Sreedhar B; Kawajiri Y
    J Chromatogr A; 2014 Aug; 1356():82-95. PubMed ID: 24975780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of pseudo-simulated moving bed process with multi-objective optimization for the separation of a ternary mixture: linear isotherms.
    Lee JW; Wankat PC
    J Chromatogr A; 2010 May; 1217(20):3418-26. PubMed ID: 20363474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of using simulated moving bed chromatography to separate intermediately eluting target compounds.
    Nowak J; Antos D; Seidel-Morgenstern A
    J Chromatogr A; 2012 Aug; 1253():58-70. PubMed ID: 22840817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Backfill-simulated moving bed operation for improving the separation performance of simulated moving bed chromatography.
    Kim KM; Lee CH
    J Chromatogr A; 2013 Oct; 1311():79-89. PubMed ID: 24007684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized design of recycle chromatography to isolate intermediate retained solutes in ternary mixtures: Langmuir isotherm systems.
    Lee JW; Wankat PC
    J Chromatogr A; 2009 Oct; 1216(41):6946-56. PubMed ID: 19733356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategy of rearranging the port locations in a three-zone simulated moving bed chromatography for binary separation with linear isotherms.
    Mun S
    J Chromatogr A; 2012 Mar; 1230():100-9. PubMed ID: 22333683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of simulated moving bed chromatography with fractionation and feedback: part I. Fractionation of one outlet.
    Li S; Kawajiri Y; Raisch J; Seidel-Morgenstern A
    J Chromatogr A; 2010 Aug; 1217(33):5337-48. PubMed ID: 20619840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on a pseudo-simulated moving bed with solvent gradient for ternary separations.
    Wei F; Shen B; Chen M; Zhao Y
    J Chromatogr A; 2012 Feb; 1225():99-106. PubMed ID: 22251885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermittent simulated moving bed chromatography: 3. Separation of Tröger's base enantiomers under nonlinear conditions.
    Katsuo S; Langel C; Sandré AL; Mazzotti M
    J Chromatogr A; 2011 Dec; 1218(52):9345-52. PubMed ID: 22119673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large scale nonlinear optimization for asymmetric operation and design of Simulated Moving Beds.
    Kawajiri Y; Biegler LT
    J Chromatogr A; 2006 Nov; 1133(1-2):226-40. PubMed ID: 16956612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of simulated moving bed chromatography with fractionation and feedback: part II. Fractionation of both outlets.
    Li S; Kawajiri Y; Raisch J; Seidel-Morgenstern A
    J Chromatogr A; 2010 Aug; 1217(33):5349-57. PubMed ID: 20619841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the performance of different multicolumn setups for chromatographic separation of proteins on hydrophobic interaction chromatography media by a numerical study.
    Bochenek R; Marek W; Piątkowski W; Antos D
    J Chromatogr A; 2013 Aug; 1301():60-72. PubMed ID: 23791144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal operating mode for enantioseparation of SB-553261 racemate based on simulated moving bed technology.
    Wongso F; Hidajat K; Ray AK
    Biotechnol Bioeng; 2004 Sep; 87(6):704-22. PubMed ID: 15329929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing control of simulated moving beds--experimental implementation.
    Abel S; Erdem G; Amanullah M; Morari M; Mazzotti M; Morbidelli M
    J Chromatogr A; 2005 Oct; 1092(1):2-16. PubMed ID: 16188555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relay simulated moving bed chromatography: concept and design criteria.
    Silva RJ; Rodrigues RC; Mota JP
    J Chromatogr A; 2012 Oct; 1260():132-42. PubMed ID: 22980644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial port-closing strategy for obtaining high throughput or high purities in a four-zone simulated moving bed chromatography for binary separation.
    Mun S
    J Chromatogr A; 2010 Oct; 1217(42):6522-30. PubMed ID: 20837353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of simulated moving bed and column chromatography for a plasmid DNA purification step and for a chiral separation.
    Paredes G; Mazzotti M
    J Chromatogr A; 2007 Feb; 1142(1):56-68. PubMed ID: 17188694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial-discard strategy for obtaining high purity products using simulated moving bed chromatography.
    Bae YS; Lee CH
    J Chromatogr A; 2006 Jul; 1122(1-2):161-73. PubMed ID: 16690063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equilibrium theory based design of simulated moving bed processes for a generalized Langmuir isotherm.
    Mazzotti M
    J Chromatogr A; 2006 Sep; 1126(1-2):311-22. PubMed ID: 16814794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.