BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22498492)

  • 1. The TP53 tumor suppressor and autophagy in malignant lymphoma.
    Xu-Monette ZY; Young KH
    Autophagy; 2012 May; 8(5):842-5. PubMed ID: 22498492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dysfunction of the TP53 tumor suppressor gene in lymphoid malignancies.
    Xu-Monette ZY; Medeiros LJ; Li Y; Orlowski RZ; Andreeff M; Bueso-Ramos CE; Greiner TC; McDonnell TJ; Young KH
    Blood; 2012 Apr; 119(16):3668-83. PubMed ID: 22275381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TP53, TP53 Target Genes (DRAM, TIGAR), and Autophagy.
    Hu W; Chen S; Thorne RF; Wu M
    Adv Exp Med Biol; 2019; 1206():127-149. PubMed ID: 31776983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct molecular interactions between HMGB1 and TP53 in colorectal cancer.
    Livesey KM; Kang R; Zeh HJ; Lotze MT; Tang D
    Autophagy; 2012 May; 8(5):846-8. PubMed ID: 22647615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting p53 pathways: mechanisms, structures, and advances in therapy.
    Wang H; Guo M; Wei H; Chen Y
    Signal Transduct Target Ther; 2023 Mar; 8(1):92. PubMed ID: 36859359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.
    Xie X; Le L; Fan Y; Lv L; Zhang J
    Autophagy; 2012 Jul; 8(7):1071-84. PubMed ID: 22576012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TRP53 activates a global autophagy program to promote tumor suppression.
    Kenzelmann Broz D; Attardi LD
    Autophagy; 2013 Sep; 9(9):1440-2. PubMed ID: 23899499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined loss of PUMA and p21 accelerates c-MYC-driven lymphoma development considerably less than loss of one allele of p53.
    Valente LJ; Grabow S; Vandenberg CJ; Strasser A; Janic A
    Oncogene; 2016 Jul; 35(29):3866-71. PubMed ID: 26640149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutive autophagy contributes to resistance to TP53-mediated apoptosis in Epstein-Barr virus-positive latency III B-cell lymphoproliferations.
    Pujals A; Favre L; Pioche-Durieu C; Robert A; Meurice G; Le Gentil M; Chelouah S; Martin-Garcia N; Le Cam E; Guettier C; Raphaël M; Vassilev LT; Gaulard P; Codogno P; Lipinski M; Wiels J
    Autophagy; 2015; 11(12):2275-87. PubMed ID: 26565591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma.
    Amaravadi RK; Yu D; Lum JJ; Bui T; Christophorou MA; Evan GI; Thomas-Tikhonenko A; Thompson CB
    J Clin Invest; 2007 Feb; 117(2):326-36. PubMed ID: 17235397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transglutaminase 2 contributes to a TP53-induced autophagy program to prevent oncogenic transformation.
    Yeo SY; Itahana Y; Guo AK; Han R; Iwamoto K; Nguyen HT; Bao Y; Kleiber K; Wu YJ; Bay BH; Voorhoeve M; Itahana K
    Elife; 2016 Mar; 5():e07101. PubMed ID: 26956429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The significance of TP53 in lymphoid malignancies: mutation prevalence, regulation, prognostic impact and potential as a therapeutic target.
    Cheung KJ; Horsman DE; Gascoyne RD
    Br J Haematol; 2009 Aug; 146(3):257-69. PubMed ID: 19500100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IAPP-driven metabolic reprogramming induces regression of p53-deficient tumours in vivo.
    Venkatanarayan A; Raulji P; Norton W; Chakravarti D; Coarfa C; Su X; Sandur SK; Ramirez MS; Lee J; Kingsley CV; Sananikone EF; Rajapakshe K; Naff K; Parker-Thornburg J; Bankson JA; Tsai KY; Gunaratne PH; Flores ER
    Nature; 2015 Jan; 517(7536):626-30. PubMed ID: 25409149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TP53 dysfunction in diffuse large B-cell lymphoma.
    Lu TX; Young KH; Xu W; Li JY
    Crit Rev Oncol Hematol; 2016 Jan; 97():47-55. PubMed ID: 26315382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of Irf5 protects hematopoietic stem cells from DNA damage-induced apoptosis and suppresses γ-irradiation-induced thymic lymphomagenesis.
    Bi X; Feng D; Korczeniewska J; Alper N; Hu G; Barnes BJ
    Oncogene; 2014 Jun; 33(25):3288-97. PubMed ID: 23912454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic inhibition of autophagy promotes p53 loss-of-heterozygosity and tumorigenesis.
    Lee E; Wei Y; Zou Z; Tucker K; Rakheja D; Levine B; Amatruda JF
    Oncotarget; 2016 Oct; 7(42):67919-67933. PubMed ID: 27655644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of one allele of ARF rescues Mdm2 haploinsufficiency effects on apoptosis and lymphoma development.
    Eischen CM; Alt JR; Wang P
    Oncogene; 2004 Nov; 23(55):8931-40. PubMed ID: 15467748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Truncated PPM1D Prevents Apoptosis in the Murine Thymus and Promotes Ionizing Radiation-Induced Lymphoma.
    Martinikova AS; Burocziova M; Stoyanov M; Macurek L
    Cells; 2020 Sep; 9(9):. PubMed ID: 32927737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear TP53: An unraveled function as transcriptional repressor of PINK1.
    Checler F; Goiran T; Alves da Costa C
    Autophagy; 2018; 14(6):1099-1101. PubMed ID: 29749796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A degradative detour for mutant TP53.
    Vakifahmetoglu-Norberg H; Yuan J
    Autophagy; 2013 Dec; 9(12):2158-60. PubMed ID: 24145670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.