These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 22498719)

  • 81. Nanogold probe enhanced Surface Plasmon Resonance immunosensor for improved detection of antibiotic residues.
    Fernández F; Sánchez-Baeza F; Marco MP
    Biosens Bioelectron; 2012 Apr; 34(1):151-8. PubMed ID: 22386486
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopy for sensitive detection of tumor markers.
    Arima Y; Teramura Y; Takiguchi H; Kawano K; Kotera H; Iwata H
    Methods Mol Biol; 2009; 503():3-20. PubMed ID: 19151933
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A novel polymerization of ultrathin sensitive imprinted film on surface plasmon resonance sensor.
    Dong J; Peng Y; Gao N; Bai J; Ning B; Liu M; Gao Z
    Analyst; 2012 Oct; 137(19):4571-6. PubMed ID: 22898662
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?
    Cao SH; Cai WP; Liu Q; Li YQ
    Annu Rev Anal Chem (Palo Alto Calif); 2012; 5():317-36. PubMed ID: 22524220
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Prism-based surface plasmon coupled emission imaging.
    Cai WP; Liu Q; Cao SH; Weng YH; Liu XQ; Li YQ
    Chemphyschem; 2012 Dec; 13(17):3848-51. PubMed ID: 23001856
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Ultrasensitive detection of deltamethrin by immune magnetic nanoparticles separation coupled with surface plasmon resonance sensor.
    Liu X; Li L; Liu YQ; Shi XB; Li WJ; Yang Y; Mao LG
    Biosens Bioelectron; 2014 Sep; 59():328-34. PubMed ID: 24747571
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Label-free detection of rare cell in human blood using gold nano slit surface plasmon resonance.
    Mousavi MZ; Chen HY; Hou HS; Chang CY; Roffler S; Wei PK; Cheng JY
    Biosensors (Basel); 2015 Mar; 5(1):98-117. PubMed ID: 25806834
    [TBL] [Abstract][Full Text] [Related]  

  • 88. DNA hybridization using surface plasmon-coupled emission.
    Malicka J; Gryczynski I; Gryczynski Z; Lakowicz JR
    Anal Chem; 2003 Dec; 75(23):6629-33. PubMed ID: 14640738
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The fabrication of nanosensor-based surface plasmon resonance for IgG detection.
    Türkoğlu EA; Yavuz H; Uzun L; Akgöl S; Denizli A
    Artif Cells Nanomed Biotechnol; 2013 Jun; 41(3):213-21. PubMed ID: 23110360
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Enhancing sensitivity of surface plasmon resonance biosensor by Ag nanocubes/chitosan composite for the detection of mouse IgG.
    Zhang D; Sun Y; Wu Q; Ma P; Zhang H; Wang Y; Song D
    Talanta; 2016; 146():364-8. PubMed ID: 26695276
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Dual signal amplification of surface plasmon resonance imaging for sensitive immunoassay of tumor marker.
    Hu W; Chen H; Shi Z; Yu L
    Anal Biochem; 2014 May; 453():16-21. PubMed ID: 24607795
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Development of an Au/ZnO thin film surface plasmon resonance-based biosensor immunoassay for the detection of carbohydrate antigen 15-3 in human saliva.
    Liang YH; Chang CC; Chen CC; Chu-Su Y; Lin CW
    Clin Biochem; 2012 Dec; 45(18):1689-93. PubMed ID: 22981930
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Development of an ultra-low volume flow cell for surface plasmon resonance detection in a miniaturized capillary electrophoresis system.
    Gaspar A; Gomez FA
    Electrophoresis; 2012 Jul; 33(12):1723-8. PubMed ID: 22740460
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Gold Nanorod Array Biochip for Label-Free, Multiplexed Biological Detection.
    Mei Z; Wang Y; Tang L
    Methods Mol Biol; 2017; 1571():129-141. PubMed ID: 28281254
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Dual Kretschmann and Otto configuration fiber surface plasmon resonance biosensor.
    Li L; Liang Y; Guang J; Cui W; Zhang X; Masson JF; Peng W
    Opt Express; 2017 Oct; 25(22):26950-26957. PubMed ID: 29092176
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Integrated dual-modality microfluidic sensor for biomarker detection using lithographic plasmonic crystal.
    Ali MA; Tabassum S; Wang Q; Wang Y; Kumar R; Dong L
    Lab Chip; 2018 Feb; 18(5):803-817. PubMed ID: 29431801
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Bioconjugated gold nanorods to enhance the sensitivity of FT-SPR-based biosensors.
    Spadavecchia J; Casale S; Boujday S; Pradier CM
    Colloids Surf B Biointerfaces; 2012 Dec; 100():1-8. PubMed ID: 22750106
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Single chip SPR and fluorescent ELISA assay of prostate specific antigen.
    Breault-Turcot J; Poirier-Richard HP; Couture M; Pelechacz D; Masson JF
    Lab Chip; 2015 Dec; 15(23):4433-40. PubMed ID: 26467689
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Semi-continuous, real-time monitoring of protein biomarker using a recyclable surface plasmon resonance sensor.
    Kim DH; Cho IH; Park JN; Paek SH; Cho HM; Paek SH
    Biosens Bioelectron; 2017 Feb; 88():232-239. PubMed ID: 27545847
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Real-time biodetection using a smartphone-based dual-color surface plasmon resonance sensor.
    Liu Q; Yuan H; Liu Y; Wang J; Jing Z; Peng W
    J Biomed Opt; 2018 Apr; 23(4):1-6. PubMed ID: 29704329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.