BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 22498729)

  • 1. Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows.
    Venturelli R; Akanyeti O; Visentin F; Ježov J; Chambers LD; Toming G; Brown J; Kruusmaa M; Megill WM; Fiorini P
    Bioinspir Biomim; 2012 Sep; 7(3):036004. PubMed ID: 22498729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What information do Kármán streets offer to flow sensing?
    Akanyeti O; Venturelli R; Visentin F; Chambers L; Megill WM; Fiorini P
    Bioinspir Biomim; 2011 Sep; 6(3):036001. PubMed ID: 21670492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of the lateral line of fish for vortex sensing.
    Ren Z; Mohseni K
    Bioinspir Biomim; 2012 Sep; 7(3):036016. PubMed ID: 22585366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street.
    Free BA; Paley DA
    Bioinspir Biomim; 2018 Mar; 13(3):035001. PubMed ID: 29355109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow.
    Liao JC
    J Exp Biol; 2006 Oct; 209(Pt 20):4077-90. PubMed ID: 17023602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distributed flow sensing for closed-loop speed control of a flexible fish robot.
    Zhang F; Lagor FD; Yeo D; Washington P; Paley DA
    Bioinspir Biomim; 2015 Oct; 10(6):065001. PubMed ID: 26495855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fish perspective: detecting flow features while moving using an artificial lateral line in steady and unsteady flow.
    Chambers LD; Akanyeti O; Venturelli R; Ježov J; Brown J; Kruusmaa M; Fiorini P; Megill WM
    J R Soc Interface; 2014 Oct; 11(99):. PubMed ID: 25079867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.
    DeVries L; Lagor FD; Lei H; Tan X; Paley DA
    Bioinspir Biomim; 2015 Mar; 10(2):025002. PubMed ID: 25807584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Karman gait.
    Liao JC
    J Exp Biol; 2004 Sep; 207(Pt 20):3495-506. PubMed ID: 15339945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.
    Abels C; Qualtieri A; De Vittorio M; Megill WM; Rizzi F
    Bioinspir Biomim; 2016 Jun; 11(3):035006. PubMed ID: 27257144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of flow speed and body size on Kármán gait kinematics in rainbow trout.
    Akanyeti O; Liao JC
    J Exp Biol; 2013 Sep; 216(Pt 18):3442-9. PubMed ID: 23737556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kármán vortex street detection by the lateral line.
    Chagnaud BP; Bleckmann H; Hofmann MH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jul; 193(7):753-63. PubMed ID: 17503054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards a high-resolution flow camera using artificial hair sensor arrays for flow pattern observations.
    Dagamseh AM; Wiegerink RJ; Lammerink TS; Krijnen GJ
    Bioinspir Biomim; 2012 Dec; 7(4):046009. PubMed ID: 22954888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A kinematic model of Kármán gaiting in rainbow trout.
    Akanyeti O; Liao JC
    J Exp Biol; 2013 Dec; 216(Pt 24):4666-77. PubMed ID: 24115054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renewable fluid dynamic energy derived from aquatic animal locomotion.
    Dabiri JO
    Bioinspir Biomim; 2007 Sep; 2(3):L1-3. PubMed ID: 17848785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fish Swimming in a Kármán Vortex Street: Kinematics, Sensory Biology and Energetics.
    Liao JC; Akanyeti O
    Mar Technol Soc J; 2017; 51(5):48-55. PubMed ID: 30631214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-motion effects on hydrodynamic pressure sensing: part I. forward-backward motion.
    Akanyeti O; Chambers LD; Ježov J; Brown J; Venturelli R; Kruusmaa M; Megill WM; Fiorini P
    Bioinspir Biomim; 2013 Jun; 8(2):026001. PubMed ID: 23462257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray.
    Asadnia M; Kottapalli AG; Haghighi R; Cloitre A; Alvarado PV; Miao J; Triantafyllou M
    Bioinspir Biomim; 2015 May; 10(3):036008. PubMed ID: 25984934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method.
    Wen L; Wang TM; Wu GH; Liang JH
    Bioinspir Biomim; 2012 Sep; 7(3):036012. PubMed ID: 22556135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Touch at a distance sensing: lateral-line inspired MEMS flow sensors.
    Prakash Kottapalli AG; Asadnia M; Miao J; Triantafyllou M
    Bioinspir Biomim; 2014 Nov; 9(4):046011. PubMed ID: 25378298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.