These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22498920)

  • 1. Simultaneous enhanced photon capture and carrier generation in Si solar cells using Ge quantum dot photonic nanocrystals.
    Usami N; Pan W; Tayagaki T; Chu ST; Li J; Feng T; Hoshi Y; Kiguchi T
    Nanotechnology; 2012 May; 23(18):185401. PubMed ID: 22498920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced photocarrier generation in large-scale photonic nanostructures fabricated from vertically aligned quantum dots.
    Tayagaki T; Hoshi Y; Kishimoto Y; Usami N
    Opt Express; 2014 Mar; 22 Suppl 2():A225-32. PubMed ID: 24922231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced photocarrier generation in large-scale photonic nanostructures fabricated from vertically aligned quantum dots.
    Tayagaki T; Hoshi Y; Kishimoto Y; Usami N
    Opt Express; 2014 Mar; 22(5):A225-32. PubMed ID: 24800278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers.
    Chen HC; Lin CC; Han HW; Tsai YL; Chang CH; Wang HW; Tsai MA; Kuo HC; Yu P
    Opt Express; 2011 Sep; 19 Suppl 5():A1141-7. PubMed ID: 21935257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell.
    Semonin OE; Luther JM; Choi S; Chen HY; Gao J; Nozik AJ; Beard MC
    Science; 2011 Dec; 334(6062):1530-3. PubMed ID: 22174246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional imaging for precise structural control of Si quantum dot networks for all-Si solar cells.
    Kourkoutis LF; Hao X; Huang S; Puthen-Veettil B; Conibeer G; Green MA; Perez-Wurfl I
    Nanoscale; 2013 Aug; 5(16):7499-504. PubMed ID: 23832085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Photonic and Excitonic Coupling in Spherical Quantum Dot Supercrystals.
    Marino E; Sciortino A; Berkhout A; MacArthur KE; Heggen M; Gregorkiewicz T; Kodger TE; Capretti A; Murray CB; Koenderink AF; Messina F; Schall P
    ACS Nano; 2020 Oct; 14(10):13806-13815. PubMed ID: 32924433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wire textured, multi-crystalline Si solar cells created using self-assembled masks.
    Wang KA; Gunawan O; Moumen N; Tulevski G; Mohamed H; Fallahazad B; Tutuc E; Guha S
    Opt Express; 2010 Nov; 18 Suppl 4():A568-74. PubMed ID: 21165090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films.
    Robel I; Subramanian V; Kuno M; Kamat PV
    J Am Chem Soc; 2006 Feb; 128(7):2385-93. PubMed ID: 16478194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Symmetric band structures and asymmetric ultrafast electron and hole relaxations in silicon and germanium quantum dots: time-domain ab initio simulation.
    Hyeon-Deuk K; Madrid AB; Prezhdo OV
    Dalton Trans; 2009 Dec; (45):10069-77. PubMed ID: 19904435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of carrier multiplication for more effcient solar cells: the case of Sn quantum dots.
    Allan G; Delerue C
    ACS Nano; 2011 Sep; 5(9):7318-23. PubMed ID: 21838302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells.
    Lee YJ; Yao YC; Tsai MT; Liu AF; Yang MD; Lai JT
    Opt Express; 2013 Nov; 21 Suppl 6():A953-63. PubMed ID: 24514936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-area ordered Ge-Si compound quantum dot molecules on dot-patterned Si (001) substrates.
    Lei H; Zhou T; Wang S; Fan Y; Zhong Z
    Nanotechnology; 2014 Aug; 25(34):345301. PubMed ID: 25078348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching.
    Oh DY; Kim SH; Huang J; Scofield A; Huffaker D; Scherer A
    Nanotechnology; 2013 Jul; 24(26):265201. PubMed ID: 23733244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon quantum dot/crystalline silicon solar cells.
    Cho EC; Park S; Hao X; Song D; Conibeer G; Park SC; Green MA
    Nanotechnology; 2008 Jun; 19(24):245201. PubMed ID: 21825804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiexciton Solar Cells of CuInSe2 Nanocrystals.
    Stolle CJ; Harvey TB; Pernik DR; Hibbert JI; Du J; Rhee DJ; Akhavan VA; Schaller RD; Korgel BA
    J Phys Chem Lett; 2014 Jan; 5(2):304-9. PubMed ID: 26270704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple exciton generation in nanocrystal quantum dots--controversy, current status and future prospects.
    Binks DJ
    Phys Chem Chem Phys; 2011 Jul; 13(28):12693-704. PubMed ID: 21603696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-Infrared Photoresponse in Ge/Si Quantum Dots Enhanced by Photon-Trapping Hole Arrays.
    Yakimov AI; Kirienko VV; Bloshkin AA; Utkin DE; Dvurechenskii AV
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High efficiency Si quantum dot heterojunction solar cells using a single SiO
    Kim TG; Kwak GY; Do K; Kim KJ
    Nanotechnology; 2019 Aug; 30(32):325404. PubMed ID: 30952144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of Ge quantum dots array in layer-cake technique for advanced photovoltaics.
    Chien CY; Chang YJ; Chang JE; Lee MS; Chen WY; Hsu TM; Li PW
    Nanotechnology; 2010 Dec; 21(50):505201. PubMed ID: 21098937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.