These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22499039)

  • 1. Saddles, twists, and curls: shape transitions in freestanding nanoribbons.
    Wang H; Upmanyu M
    Nanoscale; 2012 Jun; 4(12):3620-4. PubMed ID: 22499039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Edge-stress-induced warping of graphene sheets and nanoribbons.
    Shenoy VB; Reddy CD; Ramasubramaniam A; Zhang YW
    Phys Rev Lett; 2008 Dec; 101(24):245501. PubMed ID: 19113631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instability of flat disks with respect to the formation of twisted ribbons in smectic-A* monolayers.
    Tu H; Pelcovits RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042505. PubMed ID: 23679434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.
    Wu W; Lu P; Zhang Z; Guo W
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4787-95. PubMed ID: 22039765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen surface functionalization of graphene nanoribbons for transport gap engineering.
    Cresti A; Lopez-Bezanilla A; Ordejón P; Roche S
    ACS Nano; 2011 Nov; 5(11):9271-7. PubMed ID: 21985521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Möbius and twisted graphene nanoribbons: stability, geometry, and electronic properties.
    Caetano EW; Freire VN; Dos Santos SG; Galvão DS; Sato F
    J Chem Phys; 2008 Apr; 128(16):164719. PubMed ID: 18447491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shaping van der Waals nanoribbons via torsional constraints: scrolls, folds and supercoils.
    Shahabi A; Wang H; Upmanyu M
    Sci Rep; 2014 Nov; 4():7004. PubMed ID: 25417759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic band structures of graphene nanoribbons with self-passivating edge reconstructions.
    Tung Nguyen L; Huy Pham C; Lien Nguyen V
    J Phys Condens Matter; 2011 Jul; 23(29):295503. PubMed ID: 21737866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defects in graphene-based twisted nanoribbons: structural, electronic, and optical properties.
    Caetano EW; Freire VN; dos Santos SG; Albuquerque EL; Galvão DS; Sato F
    Langmuir; 2009 Apr; 25(8):4751-9. PubMed ID: 19239222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mobility on graphene nanoribbons.
    Jafary-Zadeh M; Reddy CD; Zhang YW
    Phys Chem Chem Phys; 2014 Feb; 16(5):2129-35. PubMed ID: 24346419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous curling of graphene sheets with reconstructed edges.
    Shenoy VB; Reddy CD; Zhang YW
    ACS Nano; 2010 Aug; 4(8):4840-4. PubMed ID: 20731459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms.
    Yu ZL; Wang D; Zhu Z; Zhang ZH
    Phys Chem Chem Phys; 2015 Oct; 17(37):24020-8. PubMed ID: 26313414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries.
    Zhang A; Wu Y; Ke SH; Feng YP; Zhang C
    Nanotechnology; 2011 Oct; 22(43):435702. PubMed ID: 21967829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topographic and spectroscopic characterization of electronic edge states in CVD grown graphene nanoribbons.
    Pan M; Girão EC; Jia X; Bhaviripudi S; Li Q; Kong J; Meunier V; Dresselhaus MS
    Nano Lett; 2012 Apr; 12(4):1928-33. PubMed ID: 22364382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale solution synthesis of narrow graphene nanoribbons.
    Vo TH; Shekhirev M; Kunkel DA; Morton MD; Berglund E; Kong L; Wilson PM; Dowben PA; Enders A; Sinitskii A
    Nat Commun; 2014; 5():3189. PubMed ID: 24510014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties.
    Xie L; Wang H; Jin C; Wang X; Jiao L; Suenaga K; Dai H
    J Am Chem Soc; 2011 Jul; 133(27):10394-7. PubMed ID: 21678963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure and elastic properties of phosphorene edges.
    Sorkin V; Zhang YW
    Nanotechnology; 2015 Jun; 26(23):235707. PubMed ID: 25994387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 Sep; 20(37):375704. PubMed ID: 19706941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curvature effects on electronic properties of armchair graphene nanoribbons without passivation.
    Chang SL; Wu BR; Yang PH; Lin MF
    Phys Chem Chem Phys; 2012 Dec; 14(47):16409-14. PubMed ID: 23132378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.