These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 224991)

  • 1. Photooxidation of NADH by 2,3-butanedione: a potential source of error in studies on active site arginyl residues.
    Homyk M; Bragg PD
    Can J Biochem; 1979 Jun; 57(6):977-9. PubMed ID: 224991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady-state kinetics and the inactivation by 2,3-butanedione of the energy-independent transhydrogenase of Escherichia coli cell membranes.
    Homyk M; Bragg PD
    Biochim Biophys Acta; 1979 Dec; 571(2):201-17. PubMed ID: 389287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of Escherichia coli L-threonine dehydrogenase by 2,3-butanedione. Evidence for a catalytically essential arginine residue.
    Epperly BR; Dekker EE
    J Biol Chem; 1989 Nov; 264(31):18296-301. PubMed ID: 2681195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The arginines of cytochrome c. The reduction-binding site for 2,3-butanedione and ascorbate.
    Pande J; Myer JP
    J Biol Chem; 1980 Dec; 255(23):11094-7. PubMed ID: 6254959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of ATP-dependent deoxyribonuclease of Micrococcus luteus by 2,3-butanedione.
    Nakano I; Anai M
    J Biochem; 1982 Oct; 92(4):1205-12. PubMed ID: 6294067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal.
    Chollet R
    Biochim Biophys Acta; 1981 Apr; 658(2):177-90. PubMed ID: 7248300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pigeon liver malic enzyme: involvement of an arginyl residue at the binding site for malate and its analogs.
    Vernon CM; Hsu RY
    Arch Biochem Biophys; 1983 Aug; 225(1):296-305. PubMed ID: 6614923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenol-sulfotransferase inactivation by 2,3-butanedione and phenylglyoxal: evidence for an active site arginyl residue.
    Borchardt RT; Schasteen CS
    Biochem Biophys Res Commun; 1977 Oct; 78(3):1067-73. PubMed ID: 911328
    [No Abstract]   [Full Text] [Related]  

  • 9. Modification of the binding site for pyridine nucleotides of glutathione reductase by 2,3-butanedione.
    Boggaram V; Mannervik B
    Acta Chem Scand B; 1979; 33(8):593-4. PubMed ID: 43640
    [No Abstract]   [Full Text] [Related]  

  • 10. Identification of essential arginyl residues in cytoplasmic malate dehydrogenase with butanedione.
    Bleile DM; Foster M; Brady JW; Harrison JH
    J Biol Chem; 1975 Aug; 250(16):6222-7. PubMed ID: 1158861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of arginyl residues in ferredoxin-NADP+ reductase from spinach leaves.
    Zanetti G; Gozzer C; Sacchi G; Curti B
    Biochim Biophys Acta; 1979 May; 568(1):127-34. PubMed ID: 444539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New evidence for the essential role of arginine residues in anion transport across the red blood cell membrane.
    Julien T; Zaki L
    Biochim Biophys Acta; 1987 Jun; 900(2):169-74. PubMed ID: 3593712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Structure of glyceraldehyde-3-phosphate dehydrogenase from rat muscle. Localization of arginine residues modified by 2,3-butanedione].
    Vospel'nikova ND; Safronova MI; Shuvalova ER; Zheltova AO; Baratova LA
    Biokhimiia; 1982 Nov; 47(11):1907-17. PubMed ID: 7150676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of E. coli L-Asparaginase by reaction with 2,3-butanedione. Chemical modification of arginine and histidine residues.
    Petz D; Löffler HG; Schneider F
    Z Naturforsch C Biosci; 1979; 34(9-10):742-6. PubMed ID: 160698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of Escherichia coli elongation factor Tu by the arginine-specific reagent butanedione.
    Marschel AH; Bodley JW
    Arch Biochem Biophys; 1980 Sep; 203(2):489-95. PubMed ID: 7006511
    [No Abstract]   [Full Text] [Related]  

  • 16. 2,3-butanedione as a photosensitizing agent: application to alpha-amino acids and alpha-chymotrypsin.
    Fliss H; Viswanatha T
    Can J Biochem; 1979 Nov; 57(11):1267-72. PubMed ID: 540238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginyl residues in the NADPH-binding sites of phenol hydroxylase.
    Sejlitz T; Neujahr HY
    J Protein Chem; 1991 Feb; 10(1):43-8. PubMed ID: 2054062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of Escherichia coli elongation factor Ts by the arginine-specific reagent butanedione.
    MarSchel AH; Bodley JW
    J Biol Chem; 1979 Mar; 254(6):1816-20. PubMed ID: 33984
    [No Abstract]   [Full Text] [Related]  

  • 19. Essential arginyl residues in fructose-1,6-bisphosphatase.
    Marcus F
    Biochemistry; 1976 Aug; 15(16):3505-9. PubMed ID: 182210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of the phosphatidylcholine-transfer protein from bovine liver with butanedione and phenylglyoxal. Evidence for one essential arginine residue.
    Akeroyd R; Lange LG; Westerman J; Wirtz KW
    Eur J Biochem; 1981 Dec; 121(1):77-81. PubMed ID: 7327172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.