These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 22499167)
1. Cell type-specific protein and transcription profiles implicate periarbuscular membrane synthesis as an important carbon sink in the mycorrhizal symbiosis. Gaude N; Schulze WX; Franken P; Krajinski F Plant Signal Behav; 2012 Apr; 7(4):461-4. PubMed ID: 22499167 [TBL] [Abstract][Full Text] [Related]
2. Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Gaude N; Bortfeld S; Duensing N; Lohse M; Krajinski F Plant J; 2012 Feb; 69(3):510-28. PubMed ID: 21978245 [TBL] [Abstract][Full Text] [Related]
3. Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. Gomez SK; Javot H; Deewatthanawong P; Torres-Jerez I; Tang Y; Blancaflor EB; Udvardi MK; Harrison MJ BMC Plant Biol; 2009 Jan; 9():10. PubMed ID: 19161626 [TBL] [Abstract][Full Text] [Related]
4. Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread. Hogekamp C; Arndt D; Pereira PA; Becker JD; Hohnjec N; Küster H Plant Physiol; 2011 Dec; 157(4):2023-43. PubMed ID: 22034628 [TBL] [Abstract][Full Text] [Related]
5. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis. Abdallah C; Valot B; Guillier C; Mounier A; Balliau T; Zivy M; van Tuinen D; Renaut J; Wipf D; Dumas-Gaudot E; Recorbet G J Proteomics; 2014 Aug; 108():354-68. PubMed ID: 24925269 [TBL] [Abstract][Full Text] [Related]
6. A roadmap of cell-type specific gene expression during sequential stages of the arbuscular mycorrhiza symbiosis. Hogekamp C; Küster H BMC Genomics; 2013 May; 14():306. PubMed ID: 23647797 [TBL] [Abstract][Full Text] [Related]
7. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis. Aloui A; Recorbet G; Lemaître-Guillier C; Mounier A; Balliau T; Zivy M; Wipf D; Dumas-Gaudot E Mycorrhiza; 2018 Jan; 28(1):1-16. PubMed ID: 28725961 [TBL] [Abstract][Full Text] [Related]
8. A Transcriptional Program for Arbuscule Degeneration during AM Symbiosis Is Regulated by MYB1. Floss DS; Gomez SK; Park HJ; MacLean AM; Müller LM; Bhattarai KK; Lévesque-Tremblay V; Maldonado-Mendoza IE; Harrison MJ Curr Biol; 2017 Apr; 27(8):1206-1212. PubMed ID: 28392110 [TBL] [Abstract][Full Text] [Related]
9. A set of fluorescent protein-based markers expressed from constitutive and arbuscular mycorrhiza-inducible promoters to label organelles, membranes and cytoskeletal elements in Medicago truncatula. Ivanov S; Harrison MJ Plant J; 2014 Dec; 80(6):1151-63. PubMed ID: 25329881 [TBL] [Abstract][Full Text] [Related]
10. The Medicago truncatula MtRbohE gene is activated in arbusculated cells and is involved in root cortex colonization. Belmondo S; Calcagno C; Genre A; Puppo A; Pauly N; Lanfranco L Planta; 2016 Jan; 243(1):251-62. PubMed ID: 26403286 [TBL] [Abstract][Full Text] [Related]
11. Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Pumplin N; Harrison MJ Plant Physiol; 2009 Oct; 151(2):809-19. PubMed ID: 19692536 [TBL] [Abstract][Full Text] [Related]
12. Hyphal Branching during Arbuscule Development Requires Reduced Arbuscular Mycorrhiza1. Park HJ; Floss DS; Levesque-Tremblay V; Bravo A; Harrison MJ Plant Physiol; 2015 Dec; 169(4):2774-88. PubMed ID: 26511916 [TBL] [Abstract][Full Text] [Related]
13. Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. Pumplin N; Zhang X; Noar RD; Harrison MJ Proc Natl Acad Sci U S A; 2012 Mar; 109(11):E665-72. PubMed ID: 22355114 [TBL] [Abstract][Full Text] [Related]
15. Extensive membrane systems at the host-arbuscular mycorrhizal fungus interface. Ivanov S; Austin J; Berg RH; Harrison MJ Nat Plants; 2019 Feb; 5(2):194-203. PubMed ID: 30737512 [TBL] [Abstract][Full Text] [Related]
16. A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis. An J; Zeng T; Ji C; de Graaf S; Zheng Z; Xiao TT; Deng X; Xiao S; Bisseling T; Limpens E; Pan Z New Phytol; 2019 Oct; 224(1):396-408. PubMed ID: 31148173 [TBL] [Abstract][Full Text] [Related]
17. Knockdown of the symbiotic sucrose synthase MtSucS1 affects arbuscule maturation and maintenance in mycorrhizal roots of Medicago truncatula. Baier MC; Keck M; Gödde V; Niehaus K; Küster H; Hohnjec N Plant Physiol; 2010 Feb; 152(2):1000-14. PubMed ID: 20007443 [TBL] [Abstract][Full Text] [Related]
18. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. Bonneau L; Huguet S; Wipf D; Pauly N; Truong HN New Phytol; 2013 Jul; 199(1):188-202. PubMed ID: 23506613 [TBL] [Abstract][Full Text] [Related]
19. Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Zhang Q; Blaylock LA; Harrison MJ Plant Cell; 2010 May; 22(5):1483-97. PubMed ID: 20453115 [TBL] [Abstract][Full Text] [Related]
20. Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Javot H; Penmetsa RV; Breuillin F; Bhattarai KK; Noar RD; Gomez SK; Zhang Q; Cook DR; Harrison MJ Plant J; 2011 Dec; 68(6):954-65. PubMed ID: 21848683 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]