BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 22499193)

  • 81. Linking molecular models with ion mobility experiments. Illustration with a rigid nucleic acid structure.
    D'Atri V; Porrini M; Rosu F; Gabelica V
    J Mass Spectrom; 2015 May; 50(5):711-26. PubMed ID: 26259654
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Impact of limited oxidation on protein ion mobility and structure of importance to footprinting by radical probe mass spectrometry.
    Downard KM; Maleknia SD; Akashi S
    Rapid Commun Mass Spectrom; 2012 Feb; 26(3):226-30. PubMed ID: 22223306
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry.
    Hines KM; Ross DH; Davidson KL; Bush MF; Xu L
    Anal Chem; 2017 Sep; 89(17):9023-9030. PubMed ID: 28764324
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Chiral and structural analysis of biomolecules using mass spectrometry and ion mobility-mass spectrometry.
    Enders JR; McLean JA
    Chirality; 2009; 21 Suppl 1():E253-64. PubMed ID: 19927374
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Concentration and Chemical Stability of Commercially Available Insulins: A High-Resolution Mass Spectrometry Study.
    Baechler F; Stettler C; Vogt B; Bally L; Groessl M
    Diabetes Technol Ther; 2020 Apr; 22(4):326-329. PubMed ID: 32031881
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Propagating Error through Traveling-Wave Ion Mobility Calibration.
    Edwards AN; Tran HM; Gallagher ES
    J Am Soc Mass Spectrom; 2021 Nov; 32(11):2621-2630. PubMed ID: 34662111
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Fourier Transform-Ion Mobility-Orbitrap Mass Spectrometer: A Next-Generation Instrument for Native Mass Spectrometry.
    Poltash ML; McCabe JW; Shirzadeh M; Laganowsky A; Clowers BH; Russell DH
    Anal Chem; 2018 Sep; 90(17):10472-10478. PubMed ID: 30091588
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Multiple Gas-Phase Conformations of a Synthetic Linear Poly(acrylamide) Polymer Observed Using Ion Mobility-Mass Spectrometry.
    Haler JRN; Far J; Aqil A; Claereboudt J; Tomczyk N; Giles K; Jérôme C; De Pauw E
    J Am Soc Mass Spectrom; 2017 Nov; 28(11):2492-2499. PubMed ID: 28808984
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A Flexible, Modular Platform for Multidimensional Ion Mobility of Native-like Ions.
    Eaton RM; Zercher BP; Wageman A; Bush MF
    J Am Soc Mass Spectrom; 2023 Jun; 34(6):1175-1185. PubMed ID: 37171243
    [TBL] [Abstract][Full Text] [Related]  

  • 90. High-throughput logP measurement using parallel liquid chromatography/ultraviolet/mass spectrometry and sample-pooling.
    Zhao Y; Jona J; Chow DT; Rong H; Semin D; Xia X; Zanon R; Spancake C; Maliski E
    Rapid Commun Mass Spectrom; 2002; 16(16):1548-55. PubMed ID: 12203246
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Accurate Prediction of Ion Mobility Collision Cross-Section Using Ion's Polarizability and Molecular Mass with Limited Data.
    Wisanpitayakorn P; Sartyoungkul S; Kurilung A; Sirivatanauksorn Y; Visessanguan W; Sathirapongsasuti N; Khoomrung S
    J Chem Inf Model; 2024 Mar; 64(5):1533-1542. PubMed ID: 38393779
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Design, synthesis, and traveling wave ion mobility mass spectrometry characterization of iron(II)- and ruthenium(II)-terpyridine metallomacrocycles.
    Chan YT; Li X; Yu J; Carri GA; Moorefield CN; Newkome GR; Wesdemiotis C
    J Am Chem Soc; 2011 Aug; 133(31):11967-76. PubMed ID: 21718066
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Statistical evaluation of internal and external mass calibration laws utilized in fourier transform ion cyclotron resonance mass spectrometry.
    Muddiman DC; Oberg AL
    Anal Chem; 2005 Apr; 77(8):2406-14. PubMed ID: 15828774
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Comparison of Different Ion Mobility Setups Using Poly (Ethylene Oxide) PEO Polymers: Drift Tube, TIMS, and T-Wave.
    Haler JRN; Massonnet P; Chirot F; Kune C; Comby-Zerbino C; Jordens J; Honing M; Mengerink Y; Far J; Dugourd P; De Pauw E
    J Am Soc Mass Spectrom; 2018 Jan; 29(1):114-120. PubMed ID: 29027151
    [TBL] [Abstract][Full Text] [Related]  

  • 95. An Improved Calibration Approach for Traveling Wave Ion Mobility Spectrometry: Robust, High-Precision Collision Cross Sections.
    Richardson K; Langridge D; Dixit SM; Ruotolo BT
    Anal Chem; 2021 Feb; 93(7):3542-3550. PubMed ID: 33555172
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Effects of Charge State, Charge Distribution, and Structure on the Ion Mobility of Protein Ions in Helium Gas: Results from Trajectory Method Calculations.
    Laszlo KJ; Bush MF
    J Phys Chem A; 2017 Oct; 121(40):7768-7777. PubMed ID: 28910102
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Real-time reaction monitoring using ion mobility-mass spectrometry.
    Harry EL; Bristow AW; Wilson ID; Creaser CS
    Analyst; 2011 Apr; 136(8):1728-32. PubMed ID: 21350772
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Rapid separation and quantitative analysis of peptides using a new nanoelectrospray- differential mobility spectrometer-mass spectrometer system.
    Levin DS; Miller RA; Nazarov EG; Vouros P
    Anal Chem; 2006 Aug; 78(15):5443-52. PubMed ID: 16878881
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Isoflurane as an Accurate Negative Mode Calibrant for Ion Mobility Spectrometry.
    Hauck BC; Harden CS; McHugh VM
    Anal Chem; 2021 Dec; 93(48):16142-16148. PubMed ID: 34806351
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Determination of amino acid isotope enrichment using liquid chromatography-mass spectrometry.
    van Eijk HM; Rooyakkers DR; Soeters PB; Deutz NE
    Anal Biochem; 1999 Jun; 271(1):8-17. PubMed ID: 10360999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.