These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 22499194)
21. Direct mass spectrometric analysis of flavors and fragrances in real applications using DART. Haefliger OP; Jeckelmann N Rapid Commun Mass Spectrom; 2007; 21(8):1361-6. PubMed ID: 17348088 [TBL] [Abstract][Full Text] [Related]
22. Corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry for monitoring of volatile organic compounds. Sabo M; Matejčík Š Anal Chem; 2012 Jun; 84(12):5327-34. PubMed ID: 22594852 [TBL] [Abstract][Full Text] [Related]
23. Low-temperature plasma ionization source for the online detection of indoor volatile organic compounds. Gong X; Xiong X; Peng Y; Yang C; Zhang S; Fang X; Zhang X Talanta; 2011 Oct; 85(5):2458-62. PubMed ID: 21962668 [TBL] [Abstract][Full Text] [Related]
24. Atmospheric pressure chemical ionization source. 1. Ionization of compounds in the gas phase. Andrade FJ; Shelley JT; Wetzel WC; Webb MR; Gamez G; Ray SJ; Hieftje GM Anal Chem; 2008 Apr; 80(8):2646-53. PubMed ID: 18345693 [TBL] [Abstract][Full Text] [Related]
25. Increasing the rate of sample vaporization in an open air desorption ionization source by using a heated metal screen as a sample holder. Krechmer J; Tice J; Crawford E; Musselman B Rapid Commun Mass Spectrom; 2011 Sep; 25(17):2384-8. PubMed ID: 21793067 [TBL] [Abstract][Full Text] [Related]
26. High-throughput mass spectrometer using atmospheric pressure ionization and a cylindrical ion trap array. Misharin AS; Laughlin BC; Vilkov A; Takáts Z; Ouyang Z; Cooks RG Anal Chem; 2005 Jan; 77(2):459-70. PubMed ID: 15649041 [TBL] [Abstract][Full Text] [Related]
27. Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study. Westhoff M; Litterst P; Freitag L; Urfer W; Bader S; Baumbach JI Thorax; 2009 Sep; 64(9):744-8. PubMed ID: 19158121 [TBL] [Abstract][Full Text] [Related]
28. Proton-transfer reaction mass spectrometry (PTRMS) in combination with thermal desorption (TD) for sensitive off-line analysis of volatiles. Crespo E; Devasena S; Sikkens C; Centeno R; Cristescu SM; Harren FJ Rapid Commun Mass Spectrom; 2012 Apr; 26(8):990-6. PubMed ID: 22396037 [TBL] [Abstract][Full Text] [Related]
29. Detection of volatile organic compounds in breath using thermal desorption electrospray ionization-ion mobility-mass spectrometry. Reynolds JC; Blackburn GJ; Guallar-Hoyas C; Moll VH; Bocos-Bintintan V; Kaur-Atwal G; Howdle MD; Harry EL; Brown LJ; Creaser CS; Thomas CL Anal Chem; 2010 Mar; 82(5):2139-44. PubMed ID: 20143891 [TBL] [Abstract][Full Text] [Related]
30. Direct analysis of volatile organic compounds in foods by headspace extraction atmospheric pressure chemical ionisation mass spectrometry. Perez-Hurtado P; Palmer E; Owen T; Aldcroft C; Allen MH; Jones J; Creaser CS; Lindley MR; Turner MA; Reynolds JC Rapid Commun Mass Spectrom; 2017 Nov; 31(22):1947-1956. PubMed ID: 28857369 [TBL] [Abstract][Full Text] [Related]
31. Holographic detection of hydrocarbon gases and other volatile organic compounds. Martínez-Hurtado JL; Davidson CA; Blyth J; Lowe CR Langmuir; 2010 Oct; 26(19):15694-9. PubMed ID: 20836549 [TBL] [Abstract][Full Text] [Related]
32. Ambient mass spectrometry employing direct analysis in real time (DART) ion source for olive oil quality and authenticity assessment. Vaclavik L; Cajka T; Hrbek V; Hajslova J Anal Chim Acta; 2009 Jul; 645(1-2):56-63. PubMed ID: 19481631 [TBL] [Abstract][Full Text] [Related]
34. Ambient analysis of trace compounds in gaseous media by SIFT-MS. Smith D; Spaněl P Analyst; 2011 May; 136(10):2009-32. PubMed ID: 21431189 [TBL] [Abstract][Full Text] [Related]
35. A new membrane inlet interface of a vacuum ultraviolet lamp ionization miniature mass spectrometer for on-line rapid measurement of volatile organic compounds in air. Hou K; Wang J; Li H Rapid Commun Mass Spectrom; 2007; 21(22):3554-60. PubMed ID: 17933006 [TBL] [Abstract][Full Text] [Related]
36. Direct monitoring of toxic compounds in air using a portable mass spectrometer. Mulligan CC; Justes DR; Noll RJ; Sanders NL; Laughlin BC; Cooks RG Analyst; 2006 Apr; 131(4):556-67. PubMed ID: 16568173 [TBL] [Abstract][Full Text] [Related]
37. Applications of direct analysis in real time-mass spectrometry (DART-MS) in Allium chemistry. (Z)-butanethial S-oxide and 1-butenyl thiosulfinates and their S-(E)-1-butenylcysteine S-oxide precursor from Allium siculum. Kubec R; Cody RB; Dane AJ; Musah RA; Schraml J; Vattekkatte A; Block E J Agric Food Chem; 2010 Jan; 58(2):1121-8. PubMed ID: 20047275 [TBL] [Abstract][Full Text] [Related]
38. Photoionization-Generated Dibromomethane Cation Chemical Ionization Source for Time-of-Flight Mass Spectrometry and Its Application on Sensitive Detection of Volatile Sulfur Compounds. Jiang J; Wang Y; Hou K; Hua L; Chen P; Liu W; Xie Y; Li H Anal Chem; 2016 May; 88(10):5028-32. PubMed ID: 27109556 [TBL] [Abstract][Full Text] [Related]
39. High-performance liquid chromatography coupled to direct analysis in real time mass spectrometry: investigations on gradient elution and influence of complex matrices on signal intensities. Beissmann S; Buchberger W; Hertsens R; Klampfl CW J Chromatogr A; 2011 Aug; 1218(31):5180-6. PubMed ID: 21683955 [TBL] [Abstract][Full Text] [Related]