BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 22499408)

  • 1. A new method for the production of gelatin microparticles for controlled protein release from porous polymeric scaffolds.
    Ozkizilcik A; Tuzlakoglu K
    J Tissue Eng Regen Med; 2014 Mar; 8(3):242-7. PubMed ID: 22499408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localised controlled release of simvastatin from porous chitosan-gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application.
    Gentile P; Nandagiri VK; Daly J; Chiono V; Mattu C; Tonda-Turo C; Ciardelli G; Ramtoola Z
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():249-257. PubMed ID: 26652371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications.
    Olami H; Zilberman M
    J Biomater Appl; 2016 Feb; 30(7):1004-15. PubMed ID: 26526932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles.
    Luciani A; Coccoli V; Orsi S; Ambrosio L; Netti PA
    Biomaterials; 2008 Dec; 29(36):4800-7. PubMed ID: 18834628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabricating microparticles/nanofibers composite and nanofiber scaffold with controllable pore size by rotating multichannel electrospinning.
    Huang YY; Wang DY; Chang LL; Yang YC
    J Biomater Sci Polym Ed; 2010; 21(11):1503-14. PubMed ID: 20534198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro and in vivo evaluation of porous PCL-PLLA 3D polymer scaffolds fabricated via salt leaching method for bone tissue engineering applications.
    Sadiasa A; Nguyen TH; Lee BT
    J Biomater Sci Polym Ed; 2014; 25(2):150-67. PubMed ID: 24138179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Fabrication of porous poly lactic acid-bone matrix gelatin composite bioactive material and its osteoinductive activity].
    Zhang Y; Li B; Li J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):135-9. PubMed ID: 17357459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospinning of bioactive polycaprolactone-gelatin nanofibres with increased pore size for cartilage tissue engineering applications.
    Semitela Â; Girão AF; Fernandes C; Ramalho G; Bdikin I; Completo A; Marques PA
    J Biomater Appl; 2020; 35(4-5):471-484. PubMed ID: 32635814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling protein release from scaffolds using polymer blends and composites.
    Ginty PJ; Barry JJ; White LJ; Howdle SM; Shakesheff KM
    Eur J Pharm Biopharm; 2008 Jan; 68(1):82-9. PubMed ID: 17884400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gelatin/Carboxymethyl chitosan based scaffolds for dermal tissue engineering applications.
    Agarwal T; Narayan R; Maji S; Behera S; Kulanthaivel S; Maiti TK; Banerjee I; Pal K; Giri S
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1499-1506. PubMed ID: 27086289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaffold: a novel carrier for cell and drug delivery.
    Garg T; Singh O; Arora S; Murthy R
    Crit Rev Ther Drug Carrier Syst; 2012; 29(1):1-63. PubMed ID: 22356721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of growth factor loaded microspheres into polymeric electrospun nanofibers for tissue engineering applications.
    Gungor-Ozkerim PS; Balkan T; Kose GT; Sarac AS; Kok FN
    J Biomed Mater Res A; 2014 Jun; 102(6):1897-908. PubMed ID: 23852885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser sintered porous polycaprolacone scaffolds loaded with hyaluronic acid and gelatin-grafted thermoresponsive hydrogel for cartilage tissue engineering.
    Lee MY; Tsai WW; Chen HJ; Chen JP; Chen CH; Yeh WL; An J
    Biomed Mater Eng; 2013; 23(6):533-43. PubMed ID: 24165555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method.
    Wu X; Liu Y; Li X; Wen P; Zhang Y; Long Y; Wang X; Guo Y; Xing F; Gao J
    Acta Biomater; 2010 Mar; 6(3):1167-77. PubMed ID: 19733699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rat bone marrow stromal cells-seeded porous gelatin/tricalcium phosphate/oligomeric proanthocyanidins composite scaffold for bone repair.
    Chen KY; Chung CM; Chen YS; Bau DT; Yao CH
    J Tissue Eng Regen Med; 2013 Sep; 7(9):708-19. PubMed ID: 22392838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.
    Lee GS; Park JH; Shin US; Kim HW
    Acta Biomater; 2011 Aug; 7(8):3178-86. PubMed ID: 21539944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds.
    Flaibani M; Elvassore N
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1632-9. PubMed ID: 24364970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polycaprolactone coated porous tricalcium phosphate scaffolds for controlled release of protein for tissue engineering.
    Xue W; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2009 Nov; 91(2):831-838. PubMed ID: 19572301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification of porous polycaprolactone/biphasic calcium phosphate scaffolds for bone regeneration in rat calvaria defect.
    Kim JH; Linh NT; Min YK; Lee BT
    J Biomater Appl; 2014 Oct; 29(4):624-35. PubMed ID: 24939961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ controlled release of rhBMP-2 in gelatin-coated 3D porous poly(ε-caprolactone) scaffolds for homogeneous bone tissue formation.
    Zhang Q; Tan K; Zhang Y; Ye Z; Tan WS; Lang M
    Biomacromolecules; 2014 Jan; 15(1):84-94. PubMed ID: 24266740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.