These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Hydrodynamic analysis of a two-dimensional model for micromechanical resonance of free-standing hair bundles. Freeman DM; Weiss TF Hear Res; 1990 Sep; 48(1-2):37-67. PubMed ID: 2249961 [TBL] [Abstract][Full Text] [Related]
5. Tectorial membrane: a possible sharpening effect on the frequency analysis in the cochlea. Zwislocki JJ Acta Otolaryngol; 1979; 87(3-4):267-9. PubMed ID: 443008 [TBL] [Abstract][Full Text] [Related]
6. Tectorial membrane: a possible effect on frequency analysis in the cochlea. Zwislocki JJ; Kletsky EJ Science; 1979 May; 204(4393):639-41. PubMed ID: 432671 [TBL] [Abstract][Full Text] [Related]
7. Auditory mechanics of the tectorial membrane and the cochlear spiral. Gavara N; Manoussaki D; Chadwick RS Curr Opin Otolaryngol Head Neck Surg; 2011 Oct; 19(5):382-7. PubMed ID: 21785353 [TBL] [Abstract][Full Text] [Related]
9. Multiple roles for the tectorial membrane in the active cochlea. Lukashkin AN; Richardson GP; Russell IJ Hear Res; 2010 Jul; 266(1-2):26-35. PubMed ID: 19853029 [TBL] [Abstract][Full Text] [Related]
10. Role of inner and outer hair cells in mechanical frequency selectivity of the cochlea. Strelioff D; Flock A; Minser KE Hear Res; 1985 May; 18(2):169-75. PubMed ID: 4044418 [TBL] [Abstract][Full Text] [Related]
11. Mechanical properties of the tectorial membrane in situ. Zwislocki JJ Acta Otolaryngol; 1988; 105(5-6):450-6. PubMed ID: 3400448 [TBL] [Abstract][Full Text] [Related]
12. Mechanics and nonlinearity of hair cell stimulation. Duifhuis H; van de Vorst JJ Hear Res; 1980 Jun; 2(3-4):493-504. PubMed ID: 7410254 [TBL] [Abstract][Full Text] [Related]
13. The effect of hair bundle shape on hair bundle hydrodynamics of non-mammalian inner ear hair cells for the full frequency range. Shatz LF Hear Res; 2004 Sep; 195(1-2):41-53. PubMed ID: 15350278 [TBL] [Abstract][Full Text] [Related]
14. Stereociliary bundles reorient during hair cell development and regeneration in the chick cochlea. Cotanche DA; Corwin JT Hear Res; 1991 Apr; 52(2):379-402. PubMed ID: 2061227 [TBL] [Abstract][Full Text] [Related]
15. Mammalian Auditory Hair Cell Bundle Stiffness Affects Frequency Tuning by Increasing Coupling along the Length of the Cochlea. Dewey JB; Xia A; Müller U; Belyantseva IA; Applegate BE; Oghalai JS Cell Rep; 2018 Jun; 23(10):2915-2927. PubMed ID: 29874579 [TBL] [Abstract][Full Text] [Related]
16. The role of fluid inertia in mechanical stimulation of hair cells. Freeman DM; Weiss TF Hear Res; 1988 Sep; 35(2-3):201-7. PubMed ID: 3058672 [TBL] [Abstract][Full Text] [Related]
17. Ionic environment of cochlear hair cells. Anniko M; Wróblewski R Hear Res; 1986; 22():279-93. PubMed ID: 3525484 [TBL] [Abstract][Full Text] [Related]
18. Shearing motion in the hearing organ measured by confocal laser heterodyne interferometry. Ulfendahl M; Khanna SM; Heneghan C Neuroreport; 1995 May; 6(8):1157-60. PubMed ID: 7662897 [TBL] [Abstract][Full Text] [Related]
19. Hair bundles of cochlear outer hair cells are shaped to minimize their fluid-dynamic resistance. Ciganović N; Wolde-Kidan A; Reichenbach T Sci Rep; 2017 Jun; 7(1):3609. PubMed ID: 28620181 [TBL] [Abstract][Full Text] [Related]
20. Resonant tectorial membrane motion in the inner ear: its crucial role in frequency tuning. Gummer AW; Hemmert W; Zenner HP Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8727-32. PubMed ID: 8710939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]