BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 22499565)

  • 1. 3D kinematic of bunched, medium and elongated sprint start.
    Slawinski J; Dumas R; Cheze L; Ontanon G; Miller C; Mazure-Bonnefoy A
    Int J Sports Med; 2012 Jul; 33(7):555-60. PubMed ID: 22499565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segment-interaction in sprint start: Analysis of 3D angular velocity and kinetic energy in elite sprinters.
    Slawinski J; Bonnefoy A; Ontanon G; Leveque JM; Miller C; Riquet A; Chèze L; Dumas R
    J Biomech; 2010 May; 43(8):1494-502. PubMed ID: 20226465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start.
    Slawinski J; Bonnefoy A; Levêque JM; Ontanon G; Riquet A; Dumas R; Chèze L
    J Strength Cond Res; 2010 Apr; 24(4):896-905. PubMed ID: 19935105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of postural changes on 3D joint angular velocity during starting block phase.
    Slawinski J; Dumas R; Cheze L; Ontanon G; Miller C; Mazure-Bonnefoy A
    J Sports Sci; 2013; 31(3):256-63. PubMed ID: 23062070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From block clearance to sprint running: characteristics underlying an effective transition.
    Debaere S; Delecluse C; Aerenhouts D; Hagman F; Jonkers I
    J Sports Sci; 2013; 31(2):137-49. PubMed ID: 22974278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anthropometry-driven block setting improves starting block performance in sprinters.
    Cavedon V; Sandri M; Pirlo M; Petrone N; Zancanaro C; Milanese C
    PLoS One; 2019; 14(3):e0213979. PubMed ID: 30917173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic stride cycle asymmetry is not associated with sprint performance and injury prevalence in athletic sprinters.
    Haugen T; Danielsen J; McGhie D; Sandbakk Ø; Ettema G
    Scand J Med Sci Sports; 2018 Mar; 28(3):1001-1008. PubMed ID: 28759127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanics of standing and crouching sprint starts.
    Slawinski J; Houel N; Bonnefoy-Mazure A; Lissajoux K; Bocquet V; Termoz N
    J Sports Sci; 2017 May; 35(9):858-865. PubMed ID: 27298075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of whole body vibration training on muscle strength and sprint performance in sprint-trained athletes.
    Delecluse C; Roelants M; Diels R; Koninckx E; Verschueren S
    Int J Sports Med; 2005 Oct; 26(8):662-8. PubMed ID: 16158372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lower limb joint kinetics and ankle joint stiffness in the sprint start push-off.
    Charalambous L; Irwin G; Bezodis IN; Kerwin D
    J Sports Sci; 2012; 30(1):1-9. PubMed ID: 22098532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sprint start kinematics during competition in elite and world-class male and female sprinters.
    Ciacci S; Merni F; Bartolomei S; Di Michele R
    J Sports Sci; 2017 Jul; 35(13):1270-1278. PubMed ID: 27540875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic and kinetic differences in block and split-stance standing starts during 30 m sprint-running.
    Macadam P; Nuell S; Cronin JB; Nagahara R; Uthoff AM; Graham SP; Tinwala F; Neville J
    Eur J Sport Sci; 2019 Sep; 19(8):1024-1031. PubMed ID: 30732539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of muscle-tendon length on joint moment and power during sprint starts.
    Mero A; Kuitunen S; Harland M; Kyröläinen H; Komi PV
    J Sports Sci; 2006 Feb; 24(2):165-73. PubMed ID: 16368626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of different anthropometry-driven block settings on sprint start performance.
    Cavedon V; Bezodis NE; Sandri M; Golia S; Zancanaro C; Milanese C
    Eur J Sport Sci; 2023 Jul; 23(7):1110-1120. PubMed ID: 36453590
    [No Abstract]   [Full Text] [Related]  

  • 15. Joint power generation differentiates young and adult sprinters during the transition from block start into acceleration: a cross-sectional study.
    Debaere S; Vanwanseele B; Delecluse C; Aerenhouts D; Hagman F; Jonkers I
    Sports Biomech; 2017 Nov; 16(4):452-462. PubMed ID: 28355967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biomechanical analysis of four sprint start positions.
    Schot PK; Knutzen KM
    Res Q Exerc Sport; 1992 Jun; 63(2):137-47. PubMed ID: 1585060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships between ground reaction impulse and sprint acceleration performance in team sport athletes.
    Kawamori N; Nosaka K; Newton RU
    J Strength Cond Res; 2013 Mar; 27(3):568-73. PubMed ID: 22531618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical ability of force application as a determinant factor of sprint performance.
    Morin JB; Edouard P; Samozino P
    Med Sci Sports Exerc; 2011 Sep; 43(9):1680-8. PubMed ID: 21364480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of segmental kinetic energy to forward propulsion of the centre of mass: Analysis of sprint acceleration.
    Slawinski J; Houel N; Moreau C; Mahlig A; Dinu D
    J Sports Sci; 2022 Jun; 40(11):1282-1289. PubMed ID: 35435805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint kinetic determinants of starting block performance in athletic sprinting.
    Brazil A; Exell T; Wilson C; Willwacher S; Bezodis IN; Irwin G
    J Sports Sci; 2018 Jul; 36(14):1656-1662. PubMed ID: 29173043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.