These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22499565)

  • 21. Effect of expertise on 3D force application during the starting block phase and subsequent steps in sprint running.
    Otsuka M; Shim JK; Kurihara T; Yoshioka S; Nokata M; Isaka T
    J Appl Biomech; 2014 Jun; 30(3):390-400. PubMed ID: 24615252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stepping back to improve sprint performance: a kinetic analysis of the first step forwards.
    Frost DM; Cronin JB
    J Strength Cond Res; 2011 Oct; 25(10):2721-8. PubMed ID: 21912339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of grab start between elite and trained swimmers.
    Vantorre J; Seifert L; Fernandes RJ; Boas JP; Chollet D
    Int J Sports Med; 2010 Dec; 31(12):887-93. PubMed ID: 20862626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elite long sprint running: a comparison between incline and level training sessions.
    Slawinski J; Dorel S; Hug F; Couturier A; Fournel V; Morin JB; Hanon C
    Med Sci Sports Exerc; 2008 Jun; 40(6):1155-62. PubMed ID: 18460988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical analysis of backstroke swimming starts.
    de Jesus K; de Jesus K; Figueiredo P; Gonçalves P; Pereira S; Vilas-Boas JP; Fernandes RJ
    Int J Sports Med; 2011 Jul; 32(7):546-51. PubMed ID: 21563041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gait asymmetry: composite scores for mechanical analyses of sprint running.
    Exell TA; Gittoes MJ; Irwin G; Kerwin DG
    J Biomech; 2012 Apr; 45(6):1108-11. PubMed ID: 22296935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age-related differences in acceleration, maximum running speed, and repeated-sprint performance in young soccer players.
    Mendez-Villanueva A; Buchheit M; Kuitunen S; Douglas A; Peltola E; Bourdon P
    J Sports Sci; 2011 Mar; 29(5):477-84. PubMed ID: 21225488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of a Wide Stance on Block Start Performance in Sprint Running.
    Otsuka M; Kurihara T; Isaka T
    PLoS One; 2015; 10(11):e0142230. PubMed ID: 26544719
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical and skeletal muscle determinants of maximum running speed with aging.
    Korhonen MT; Mero AA; Alén M; Sipilä S; Häkkinen K; Liikavainio T; Viitasalo JT; Haverinen MT; Suominen H
    Med Sci Sports Exerc; 2009 Apr; 41(4):844-56. PubMed ID: 19276848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Training of the sprint start technique with biomechanical feedback.
    Mendoza L; Schöllhorn W
    J Sports Sci; 1993 Feb; 11(1):25-9. PubMed ID: 8450581
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinematic alterations due to different loading schemes in early acceleration sprint performance from starting blocks.
    Maulder PS; Bradshaw EJ; Keogh JW
    J Strength Cond Res; 2008 Nov; 22(6):1992-2002. PubMed ID: 18978610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of a reduced first step width on starting block and first stance power and impulses during an athletic sprint start.
    Sandamas P; Gutierrez-Farewik EM; Arndt A
    J Sports Sci; 2019 May; 37(9):1046-1054. PubMed ID: 30460879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationships between lower-limb kinematics and block phase performance in a cross section of sprinters.
    Bezodis NE; Salo AI; Trewartha G
    Eur J Sport Sci; 2015; 15(2):118-24. PubMed ID: 24963548
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Age-related differences in repeated-sprint ability in highly trained youth football players.
    Mujika I; Spencer M; Santisteban J; Goiriena JJ; Bishop D
    J Sports Sci; 2009 Dec; 27(14):1581-90. PubMed ID: 19967589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of weighted sled towing on ground reaction force during the acceleration phase of sprint running.
    Kawamori N; Newton R; Nosaka K
    J Sports Sci; 2014; 32(12):1139-45. PubMed ID: 24576071
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of different starting procedures on sprinters' reaction time.
    Haugen TA; Shalfawi S; Tønnessen E
    J Sports Sci; 2013; 31(7):699-705. PubMed ID: 23199011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical comparison between sprint start, sled pulling, and selected squat-type exercises.
    Okkonen O; Häkkinen K
    J Strength Cond Res; 2013 Oct; 27(10):2662-73. PubMed ID: 23760361
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of rear-wheel camber on maximal effort mobility performance in wheelchair athletes.
    Mason B; van der Woude L; Tolfrey K; Goosey-Tolfrey V
    Int J Sports Med; 2012 Mar; 33(3):199-204. PubMed ID: 22187387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repeated-sprint sequences during youth soccer matches.
    Buchheit M; Mendez-villanueva A; Simpson BM; Bourdon PC
    Int J Sports Med; 2010 Oct; 31(10):709-16. PubMed ID: 20617485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The difference is in the start: impact of timing and start procedure on sprint running performance.
    Haugen TA; Tønnessen E; Seiler SK
    J Strength Cond Res; 2012 Feb; 26(2):473-9. PubMed ID: 22233797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.