These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22499565)

  • 41. The difference is in the start: impact of timing and start procedure on sprint running performance.
    Haugen TA; Tønnessen E; Seiler SK
    J Strength Cond Res; 2012 Feb; 26(2):473-9. PubMed ID: 22233797
    [TBL] [Abstract][Full Text] [Related]  

  • 42. VO2 kinetics and performance in soccer players after intense training and inactivity.
    Christensen PM; Krustrup P; Gunnarsson TP; Kiilerich K; Nybo L; Bangsbo J
    Med Sci Sports Exerc; 2011 Sep; 43(9):1716-24. PubMed ID: 21311360
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reaction time aspects of elite sprinters in athletic world championships.
    Tønnessen E; Haugen T; Shalfawi SA
    J Strength Cond Res; 2013 Apr; 27(4):885-92. PubMed ID: 22739331
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improvement in sprint start performance by modulating an initial loading location on the starting blocks.
    Nagahara R; Gleadhill S; Ohshima Y
    J Sports Sci; 2020 Nov; 38(21):2437-2445. PubMed ID: 32608346
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Measurement procedures affect the interpretation of metatarsophalangeal joint function during accelerated sprinting.
    Smith G; Lake M; Lees A; Worsfold P
    J Sports Sci; 2012; 30(14):1521-7. PubMed ID: 22867449
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modelling the relationship between isokinetic muscle strength and sprint running performance.
    Dowson MN; Nevill ME; Lakomy HK; Nevill AM; Hazeldine RJ
    J Sports Sci; 1998 Apr; 16(3):257-65. PubMed ID: 9596360
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Attentional focus effects on sprint start performance as a function of skill level.
    Ille A; Selin I; Do MC; Thon B
    J Sports Sci; 2013; 31(15):1705-12. PubMed ID: 23710928
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Volume-dependent response of precooling for intermittent-sprint exercise in the heat.
    Minett GM; Duffield R; Marino FE; Portus M
    Med Sci Sports Exerc; 2011 Sep; 43(9):1760-9. PubMed ID: 21311362
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Track compliance does not affect sprinting performance.
    Stafilidis S; Arampatzis A
    J Sports Sci; 2007 Nov; 25(13):1479-90. PubMed ID: 17852678
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Measurement error in estimates of sprint velocity from a laser displacement measurement device.
    Bezodis NE; Salo AI; Trewartha G
    Int J Sports Med; 2012 Jun; 33(6):439-44. PubMed ID: 22450882
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Relationships between sprinting, agility, and jump ability in female athletes.
    Vescovi JD; McGuigan MR
    J Sports Sci; 2008 Jan; 26(1):97-107. PubMed ID: 17852692
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Skill-dependent proximal-to-distal sequence in team-handball throwing.
    Wagner H; Pfusterschmied J; Von Duvillard SP; Müller E
    J Sports Sci; 2012; 30(1):21-9. PubMed ID: 22111879
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The changing shape characteristics associated with success in world-class sprinters.
    Watts AS; Coleman I; Nevill A
    J Sports Sci; 2012; 30(11):1085-95. PubMed ID: 21916672
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Swim specialty affects energy cost and motor organization.
    Seifert L; Komar J; Leprêtre PM; Lemaitre F; Chavallard F; Alberty M; Houel N; Hausswirth C; Chollet D; Hellard P
    Int J Sports Med; 2010 Sep; 31(9):624-30. PubMed ID: 20645234
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The relationship between extension of the metatarsophalangeal joint and sprint time for 100 m Olympic athletes.
    Krell JB; Stefanyshyn DJ
    J Sports Sci; 2006 Feb; 24(2):175-80. PubMed ID: 16368627
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinematic analysis of the braking and propulsion phases during the support time in sprint running.
    Ciacci S; Di Michele R; Merni F
    Gait Posture; 2010 Feb; 31(2):209-12. PubMed ID: 19926284
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biological movement variability during the sprint start: performance enhancement or hindrance?
    Bradshaw EJ; Maulder PS; Keogh JW
    Sports Biomech; 2007 Sep; 6(3):246-60. PubMed ID: 17933190
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relationships between anthropometric characteristics, block settings, and block clearance technique during the sprint start.
    Cavedon V; Bezodis NE; Sandri M; Pirlo M; Zancanaro C; Milanese C
    J Sports Sci; 2022 May; 40(10):1097-1109. PubMed ID: 35262456
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Backstroke start kinematic and kinetic changes due to different feet positioning.
    de Jesus K; de Jesus K; Figueiredo P; Gonçalves P; Pereira SM; Vilas-Boas JP; Fernandes RJ
    J Sports Sci; 2013; 31(15):1665-75. PubMed ID: 23688055
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Understanding the track and field sprint start through a functional analysis of the external force features which contribute to higher levels of block phase performance.
    Bezodis NE; Walton SP; Nagahara R
    J Sports Sci; 2019 Mar; 37(5):560-567. PubMed ID: 30306822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.