These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 22499597)
1. Foliar anatomical and morphological variation in Nothofagus pumilio seedlings under controlled irradiance and soil moisture levels. Ivancich HS; Lencinas MV; Pastur GJ; Esteban RM; Hernández L; Lindstrom I Tree Physiol; 2012 May; 32(5):554-64. PubMed ID: 22499597 [TBL] [Abstract][Full Text] [Related]
2. Thermal energy dissipation and its components in two developmental stages of a shade-tolerant species, Nothofagus nitida, and a shade-intolerant species, Nothofagus dombeyi. Reyes-Díaz M; Ivanov AG; Huner NP; Alberdi M; Corcuera LJ; Bravo LA Tree Physiol; 2009 May; 29(5):651-62. PubMed ID: 19203980 [TBL] [Abstract][Full Text] [Related]
3. Effects of water stress on irradiance acclimation of leaf traits in almond trees. Egea G; González-Real MM; Baille A; Nortes PA; Conesa MR; Ruiz-Salleres I Tree Physiol; 2012 Apr; 32(4):450-63. PubMed ID: 22440881 [TBL] [Abstract][Full Text] [Related]
4. Tree size and light availability increase photochemical instead of non-photochemical capacities of Nothofagus nitida trees growing in an evergreen temperate rain forest. Coopman RE; Briceño VF; Corcuera LJ; Reyes-Díaz M; Alvarez D; Sáez K; García-Plazaola JI; Alberdi M; Bravo LA Tree Physiol; 2011 Oct; 31(10):1128-41. PubMed ID: 21990025 [TBL] [Abstract][Full Text] [Related]
5. Acclimation of leaf cohorts expanded under light and water stresses: an adaptive mechanism of Eucryphia cordifolia to face changes in climatic conditions? Morales LV; Coopman RE; Rojas R; Escandón AB; Flexas J; Galmés J; García-Plazaola JI; Gago J; Cabrera HM; Corcuera LJ Tree Physiol; 2014 Dec; 34(12):1305-20. PubMed ID: 25398632 [TBL] [Abstract][Full Text] [Related]
6. Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under forest conditions. Schaub M; Skelly JM; Zhang JW; Ferdinand JA; Savage JE; Stevenson RE; Davis DD; Steiner KC Environ Pollut; 2005 Feb; 133(3):553-67. PubMed ID: 15519730 [TBL] [Abstract][Full Text] [Related]
7. Ozone exposure induces the activation of leaf senescence-related processes and morphological and growth changes in seedlings of Mediterranean tree species. Ribas A; Peñuelas J; Elvira S; Gimeno BS Environ Pollut; 2005 Mar; 134(2):291-300. PubMed ID: 15589656 [TBL] [Abstract][Full Text] [Related]
8. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding. Mielke MS; Schaffer B Tree Physiol; 2010 Jan; 30(1):45-55. PubMed ID: 19923194 [TBL] [Abstract][Full Text] [Related]
9. Nitrogen deposition does not affect the impact of shade on Quercus acutissima seedlings. Li M; Guo W; Du N; Xu Z; Guo X PLoS One; 2018; 13(3):e0194261. PubMed ID: 29534093 [TBL] [Abstract][Full Text] [Related]
10. Morphological and physiological differentiation of seedlings between dry and wet habitats in a tropical dry forest. Pineda-García F; Paz H; Tinoco-Ojanguren C Plant Cell Environ; 2011 Sep; 34(9):1536-47. PubMed ID: 21696402 [TBL] [Abstract][Full Text] [Related]
11. Physiological and ecological significance of sunflecks for dipterocarp seedlings. Leakey AD; Scholes JD; Press MC J Exp Bot; 2005 Jan; 56(411):469-82. PubMed ID: 15596478 [TBL] [Abstract][Full Text] [Related]
12. Plasticity of shoot and needle morphology and photosynthesis of two Picea species with different site preferences in northern Japan. Ishii H; Kitaoka S; Fujisaki T; Maruyama Y; Koike T Tree Physiol; 2007 Nov; 27(11):1595-605. PubMed ID: 17669749 [TBL] [Abstract][Full Text] [Related]
13. Effects of soil type and light on height growth, biomass partitioning, and nitrogen dynamics on 22 species of tropical dry forest tree seedlings: Comparisons between legumes and nonlegumes. Smith-Martin CM; Gei MG; Bergstrom E; Becklund KK; Becknell JM; Waring BG; Werden LK; Powers JS Am J Bot; 2017 Mar; 104(3):399-410. PubMed ID: 28341631 [TBL] [Abstract][Full Text] [Related]
14. Photosynthetic and morphological acclimation of seedlings of tropical lianas to changes in the light environment. Avalos G; Mulkey SS Am J Bot; 2014 Dec; 101(12):2088-96. PubMed ID: 25480706 [TBL] [Abstract][Full Text] [Related]
15. Patterns of dynamic irradiance affect the photosynthetic capacity and growth of dipterocarp tree seedlings. Leakey AD; Press MC; Scholes JD Oecologia; 2003 Apr; 135(2):184-93. PubMed ID: 12698339 [TBL] [Abstract][Full Text] [Related]
16. Construction costs, chemical composition and payback time of high- and low-irradiance leaves. Poorter H; Pepin S; Rijkers T; de Jong Y; Evans JR; Körner C J Exp Bot; 2006; 57(2):355-71. PubMed ID: 16303828 [TBL] [Abstract][Full Text] [Related]
17. Utilization of lightflecks by seedlings of five dominant tree species of different subtropical forest successional stages under low-light growth conditions. Zhang Q; Chen YJ; Song LY; Liu N; Sun LL; Peng CL Tree Physiol; 2012 May; 32(5):545-53. PubMed ID: 22569998 [TBL] [Abstract][Full Text] [Related]
18. Responses of hybrid poplar clones and red maple seedlings to ambient O(3) under differing light within a mixed hardwood forest. Wei C; Skelly JM; Pennypacker SP; Ferdinand JA; Savage JE; Stevenson RE; Davis DD Environ Pollut; 2004 Jul; 130(2):199-214. PubMed ID: 15158034 [TBL] [Abstract][Full Text] [Related]
19. Acclimation of shoot and needle morphology and photosynthesis of two Picea species to differences in soil nutrient availability. Ishii H; Ooishi M; Maruyama Y; Koike T Tree Physiol; 2003 May; 23(7):453-61. PubMed ID: 12670799 [TBL] [Abstract][Full Text] [Related]
20. Ecophysiological evaluation of the potential invasiveness of Rhus typhina in its non-native habitats. Zhang Z; Jiang C; Zhang J; Zhang H; Shi L Tree Physiol; 2009 Nov; 29(11):1307-16. PubMed ID: 19734548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]