BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 22499693)

  • 1. A family-based probabilistic method for capturing de novo mutations from high-throughput short-read sequencing data.
    Cartwright RA; Hussin J; Keebler JE; Stone EA; Awadalla P
    Stat Appl Genet Mol Biol; 2012 Jan; 11(2):. PubMed ID: 22499693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint variant and de novo mutation identification on pedigrees from high-throughput sequencing data.
    Cleary JG; Braithwaite R; Gaastra K; Hilbush BS; Inglis S; Irvine SA; Jackson A; Littin R; Nohzadeh-Malakshah S; Rathod M; Ware D; Trigg L; De La Vega FM
    J Comput Biol; 2014 Jun; 21(6):405-19. PubMed ID: 24874280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A likelihood-based framework for variant calling and de novo mutation detection in families.
    Li B; Chen W; Zhan X; Busonero F; Sanna S; Sidore C; Cucca F; Kang HM; Abecasis GR
    PLoS Genet; 2012; 8(10):e1002944. PubMed ID: 23055937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mendelian Inconsistent Signatures from 1314 Ancestrally Diverse Family Trios Distinguish Biological Variation from Sequencing Error.
    Kothiyal P; Wong WSW; Bodian DL; Niederhuber JE
    J Comput Biol; 2019 May; 26(5):405-419. PubMed ID: 30942611
    [No Abstract]   [Full Text] [Related]  

  • 5. Inferring haplotypes from genotypes on a pedigree with mutations, genotyping errors and missing alleles.
    Wang WB; Jiang T
    J Bioinform Comput Biol; 2011 Apr; 9(2):339-65. PubMed ID: 21523936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probability of detection of genotyping errors and mutations as inheritance inconsistencies in nuclear-family data.
    Douglas JA; Skol AD; Boehnke M
    Am J Hum Genet; 2002 Feb; 70(2):487-95. PubMed ID: 11791214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tempo and mode of genomic mutations unveil human evolutionary history.
    Hara Y
    Genes Genet Syst; 2015; 90(3):123-31. PubMed ID: 26510567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Family genome browser: visualizing genomes with pedigree information.
    Juan L; Liu Y; Wang Y; Teng M; Zang T; Wang Y
    Bioinformatics; 2015 Jul; 31(14):2262-8. PubMed ID: 25788626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Value of Mendelian laws of segregation in families: data quality control, imputation, and beyond.
    Blue EM; Sun L; Tintle NL; Wijsman EM
    Genet Epidemiol; 2014 Sep; 38 Suppl 1(0 1):S21-8. PubMed ID: 25112184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Next-generation sequencing to solve complex inherited retinal dystrophy: A case series of multiple genes contributing to disease in extended families.
    Jones KD; Wheaton DK; Bowne SJ; Sullivan LS; Birch DG; Chen R; Daiger SP
    Mol Vis; 2017; 23():470-481. PubMed ID: 28761320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal.
    Sun JX; He Y; Sanford E; Montesion M; Frampton GM; Vignot S; Soria JC; Ross JS; Miller VA; Stephens PJ; Lipson D; Yelensky R
    PLoS Comput Biol; 2018 Feb; 14(2):e1005965. PubMed ID: 29415044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SV2: accurate structural variation genotyping and de novo mutation detection from whole genomes.
    Antaki D; Brandler WM; Sebat J
    Bioinformatics; 2018 May; 34(10):1774-1777. PubMed ID: 29300834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct estimation of de novo mutation rates in a chimpanzee parent-offspring trio by ultra-deep whole genome sequencing.
    Tatsumoto S; Go Y; Fukuta K; Noguchi H; Hayakawa T; Tomonaga M; Hirai H; Matsuzawa T; Agata K; Fujiyama A
    Sci Rep; 2017 Nov; 7(1):13561. PubMed ID: 29093469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SNPest: a probabilistic graphical model for estimating genotypes.
    Lindgreen S; Krogh A; Pedersen JS
    BMC Res Notes; 2014 Oct; 7():698. PubMed ID: 25294605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of genetic relatedness from low-coverage human genome sequences using pedigree simulations.
    Martin MD; Jay F; Castellano S; Slatkin M
    Mol Ecol; 2017 Aug; 26(16):4145-4157. PubMed ID: 28543951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reference data set of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree.
    Eberle MA; Fritzilas E; Krusche P; Källberg M; Moore BL; Bekritsky MA; Iqbal Z; Chuang HY; Humphray SJ; Halpern AL; Kruglyak S; Margulies EH; McVean G; Bentley DR
    Genome Res; 2017 Jan; 27(1):157-164. PubMed ID: 27903644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A framework for the detection of de novo mutations in family-based sequencing data.
    Francioli LC; Cretu-Stancu M; Garimella KV; Fromer M; Kloosterman WP; ; Samocha KE; Neale BM; Daly MJ; Banks E; DePristo MA; de Bakker PI
    Eur J Hum Genet; 2017 Feb; 25(2):227-233. PubMed ID: 27876817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint genotype inference with germline and somatic mutations.
    Bareke E; Saillour V; Spinella JF; Vidal R; Healy J; Sinnett D; Csűrös M
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S3. PubMed ID: 23734724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct estimate of the rate of germline mutation in a bird.
    Smeds L; Qvarnström A; Ellegren H
    Genome Res; 2016 Sep; 26(9):1211-8. PubMed ID: 27412854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HAPDeNovo: a haplotype-based approach for filtering and phasing de novo mutations in linked read sequencing data.
    Zhou X; Batzoglou S; Sidow A; Zhang L
    BMC Genomics; 2018 Jun; 19(1):467. PubMed ID: 29914369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.