BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22499699)

  • 21. Estimation and visualization of identity-by-descent within pedigrees simplifies interpretation of complex trait analysis.
    Marchani EE; Wijsman EM
    Hum Hered; 2011; 72(4):289-97. PubMed ID: 22189471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of complex human genetic traits: an ordered-notation method and new tests for mode of inheritance.
    Thomson G
    Am J Hum Genet; 1995 Aug; 57(2):474-86. PubMed ID: 7668274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of genetic loci for basal cell nevus syndrome and inflammatory bowel disease in a single large pedigree.
    Panhuysen CI; Karban A; Knodle Manning A; Bayless TM; Duerr RH; Bailey-Wilson JE; Epstein EH; Brant SR
    Hum Genet; 2006 Aug; 120(1):31-41. PubMed ID: 16733713
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MCMC-based linkage analysis for complex traits on general pedigrees: multipoint analysis with a two-locus model and a polygenic component.
    Sung YJ; Thompson EA; Wijsman EM
    Genet Epidemiol; 2007 Feb; 31(2):103-14. PubMed ID: 17123301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-locus models of disease: comparison of likelihood and nonparametric linkage methods.
    Goldin LR; Weeks DE
    Am J Hum Genet; 1993 Oct; 53(4):908-15. PubMed ID: 8213819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Replication of genetic linkage by follow-up of previously studied pedigrees.
    Gershon ES; Goldin LR
    Am J Hum Genet; 1994 Apr; 54(4):715-8. PubMed ID: 8128970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detecting linkage between a trait and a marker in a random mating population without pedigree record.
    Mano S; Endo TA; Oka A; Ozawa A; Gojobori T; Inoko H
    PLoS One; 2009; 4(3):e4956. PubMed ID: 19308260
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Attention-deficit/hyperactivity disorder (ADHD): feasibility of linkage analysis in a genetic isolate using extended and multigenerational pedigrees.
    Arcos-Burgos M; Castellanos FX; Lopera F; Pineda D; Palacio JD; Garcia M; Henao GC; Palacio LG; Berg K; Bailey-Wilson JE; Muenke M
    Clin Genet; 2002 May; 61(5):335-43. PubMed ID: 12081716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of pedigree data in populations with multiple ancestries: Strategies for dealing with admixture in Caribbean Hispanic families from the ADSP.
    Nafikov RA; Nato AQ; Sohi H; Wang B; Brown L; Horimoto AR; Vardarajan BN; Barral SM; Tosto G; Mayeux RP; Thornton TA; Blue E; Wijsman EM
    Genet Epidemiol; 2018 Sep; 42(6):500-515. PubMed ID: 29862559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Monte Carlo method for combined segregation and linkage analysis.
    Guo SW; Thompson EA
    Am J Hum Genet; 1992 Nov; 51(5):1111-26. PubMed ID: 1415253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ancestral haplotype reconstruction in endogamous populations using identity-by-descent.
    Finke K; Kourakos M; Brown G; Dang HT; Tan SJS; Simons YB; Ramdas S; Schäffer AA; Kember RL; Bućan M; Mathieson S
    PLoS Comput Biol; 2021 Feb; 17(2):e1008638. PubMed ID: 33635861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The probabilistic determination of identity-by-descent sharing for pairs of relatives from pedigrees.
    Amos CI; Dawson DV; Elston RC
    Am J Hum Genet; 1990 Nov; 47(5):842-53. PubMed ID: 2220824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A sampling algorithm for segregation analysis.
    Tier B; Henshall J
    Genet Sel Evol; 2001; 33(6):587-603. PubMed ID: 11742631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multipoint development of the weighted pairwise correlation (WPC) linkage method for pedigrees of arbitrary size and application to the analysis of breast cancer and alcoholism familial data.
    Zinn-Justin A; Ziegler A; Abel L
    Genet Epidemiol; 2001 Jul; 21(1):40-52. PubMed ID: 11443733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Haplotype reconstruction in large pedigrees with untyped individuals through IBD inference.
    Li X; Li J
    J Comput Biol; 2011 Nov; 18(11):1411-21. PubMed ID: 21923410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimal ascertainment strategies to detect linkage to common disease alleles.
    Badner JA; Gershon ES; Goldin LR
    Am J Hum Genet; 1998 Sep; 63(3):880-8. PubMed ID: 9718337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A schizophrenia-susceptibility locus at 6q25, in one of the world's largest reported pedigrees.
    Lindholm E; Ekholm B; Shaw S; Jalonen P; Johansson G; Pettersson U; Sherrington R; Adolfsson R; Jazin E
    Am J Hum Genet; 2001 Jul; 69(1):96-105. PubMed ID: 11389481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The advantages of dense marker sets for linkage analysis with very large families.
    Thomson R; Quinn S; McKay J; Silver J; Bahlo M; FitzGerald L; Foote S; Dickinson J; Stankovich J
    Hum Genet; 2007 May; 121(3-4):459-68. PubMed ID: 17252250
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Linkage studies of schizophrenia: a stimulation study of statistical power.
    Chen WJ; Faraone SV; Tsuang MT
    Genet Epidemiol; 1992; 9(2):123-39. PubMed ID: 1639244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly significant linkage to the SLI1 locus in an expanded sample of individuals affected by specific language impairment.
    SLI Consortium (SLIC)
    Am J Hum Genet; 2004 Jun; 74(6):1225-38. PubMed ID: 15133743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.