BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 2249991)

  • 1. Free ADP levels in transgenic mouse liver expressing creatine kinase. Effects of enzyme activity, phosphagen type, and substrate concentration.
    Brosnan MJ; Chen L; Van Dyke TA; Koretsky AP
    J Biol Chem; 1990 Dec; 265(34):20849-55. PubMed ID: 2249991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR detection of creatine kinase expressed in liver of transgenic mice: determination of free ADP levels.
    Koretsky AP; Brosnan MJ; Chen LH; Chen JD; Van Dyke T
    Proc Natl Acad Sci U S A; 1990 Apr; 87(8):3112-6. PubMed ID: 2326269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphocreatine protects ATP from a fructose load in transgenic mouse liver expressing creatine kinase.
    Brosnan MJ; Chen LH; Wheeler CE; Van Dyke TA; Koretsky AP
    Am J Physiol; 1991 Jun; 260(6 Pt 1):C1191-200. PubMed ID: 2058653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic livers expressing mitochondrial and cytosolic CK: mitochondrial CK modulates free ADP levels.
    Askenasy N; Koretsky AP
    Am J Physiol Cell Physiol; 2002 Feb; 282(2):C338-46. PubMed ID: 11788345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of endotoxin tolerance in transgenic mouse liver expressing creatine kinase.
    Hatano E; Tanaka A; Iwata S; Satoh S; Kitai T; Tsunekawa S; Inomoto T; Shinohara H; Chance B; Yamaoka Y
    Hepatology; 1996 Sep; 24(3):663-9. PubMed ID: 8781340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct determination of creatine kinase equilibrium constants with creatine or cyclocreatine substrate.
    LoPresti P; Cohn M
    Biochim Biophys Acta; 1989 Oct; 998(3):317-20. PubMed ID: 2804134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo (1)H MRS and (31)P MRSI of the response to cyclocreatine in transgenic mouse liver expressing creatine kinase.
    Cui MH; Jayalakshmi K; Liu L; Guha C; Branch CA
    NMR Biomed; 2015 Dec; 28(12):1634-44. PubMed ID: 26451872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of the mitochondrial permeability transition by creatine kinase substrates. Requirement for microcompartmentation.
    Dolder M; Walzel B; Speer O; Schlattner U; Wallimann T
    J Biol Chem; 2003 May; 278(20):17760-6. PubMed ID: 12621025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR.
    Yoshizaki K; Watari H; Radda GK
    Biochim Biophys Acta; 1990 Feb; 1051(2):144-50. PubMed ID: 2310769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is there the creatine kinase equilibrium in working heart cells?
    Saks VA; Aliev MK
    Biochem Biophys Res Commun; 1996 Oct; 227(2):360-7. PubMed ID: 8878521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphocreatine protects transgenic mouse liver expressing creatine kinase from hypoxia and ischemia.
    Miller K; Halow J; Koretsky AP
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1544-51. PubMed ID: 8279516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 31P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase.
    Brindle K; Braddock P; Fulton S
    Biochemistry; 1990 Apr; 29(13):3295-302. PubMed ID: 2185836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration.
    Aliev MK; Saks VA
    Biophys J; 1997 Jul; 73(1):428-45. PubMed ID: 9199806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creatine kinase equilibration follows solution thermodynamics in skeletal muscle. 31P NMR studies using creatine analogs.
    Wiseman RW; Kushmerick MJ
    J Biol Chem; 1995 May; 270(21):12428-38. PubMed ID: 7759484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional coupling between nucleoside diphosphate kinase of the outer mitochondrial compartment and oxidative phosphorylation.
    Lipskaya TY; Voinova VV
    Biochemistry (Mosc); 2005 Dec; 70(12):1354-62. PubMed ID: 16417458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creatine kinase kinetics, ATP turnover, and cardiac performance in hearts depleted of creatine with the substrate analogue beta-guanidinopropionic acid.
    Shoubridge EA; Jeffry FM; Keogh JM; Radda GK; Seymour AM
    Biochim Biophys Acta; 1985 Oct; 847(1):25-32. PubMed ID: 4052460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of 31P-NMR magnetization transfer and radioisotope exchange methods for assessment of an enzyme reaction mechanism: rate-determining steps of the creatine kinase reaction.
    Kupriyanov VV; Balaban RS; Lyulina NV; Steinschneider AYa ; Saks VA
    Biochim Biophys Acta; 1990 Dec; 1020(3):290-304. PubMed ID: 2248962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and accumulation of an extremely stable high-energy phosphate compound by muscle, heart, and brain of animals fed the creatine analog, 1-carboxyethyl-2-iminoimidazolidine (homocyclocreatine).
    Roberts JJ; Walker JB
    Arch Biochem Biophys; 1983 Feb; 220(2):563-71. PubMed ID: 6824340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estrogen-induced changes in high-energy phosphate metabolism in rat uterus: 31P NMR studies.
    Degani H; Shaer A; Victor TA; Kaye AM
    Biochemistry; 1984 Jun; 23(12):2572-7. PubMed ID: 6466600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.