These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
778 related articles for article (PubMed ID: 22500465)
1. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Kobayashi M; Terayama Y; Yamaguchi H; Terada M; Murakami D; Ishihara K; Takahara A Langmuir; 2012 May; 28(18):7212-22. PubMed ID: 22500465 [TBL] [Abstract][Full Text] [Related]
2. Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling. Yang WJ; Neoh KG; Kang ET; Lee SS; Teo SL; Rittschof D Biofouling; 2012; 28(9):895-912. PubMed ID: 22963034 [TBL] [Abstract][Full Text] [Related]
3. Tribological properties of hydrophilic polymer brushes under wet conditions. Kobayashi M; Takahara A Chem Rec; 2010 Aug; 10(4):208-16. PubMed ID: 20533448 [TBL] [Abstract][Full Text] [Related]
4. Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties. Yang J; Chen H; Xiao S; Shen M; Chen F; Fan P; Zhong M; Zheng J Langmuir; 2015 Aug; 31(33):9125-33. PubMed ID: 26245712 [TBL] [Abstract][Full Text] [Related]
5. Nanostructure and salt effect of zwitterionic carboxybetaine brush at the air/water interface. Matsuoka H; Yamakawa Y; Ghosh A; Saruwatari Y Langmuir; 2015 May; 31(17):4827-36. PubMed ID: 25867972 [TBL] [Abstract][Full Text] [Related]
6. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity. Wei Y; Zhang J; Feng X; Liu D J Biomater Sci Polym Ed; 2017 Dec; 28(18):2101-2116. PubMed ID: 28891389 [TBL] [Abstract][Full Text] [Related]
7. Sulfobetaine-based polymer brushes in marine environment: is there an effect of the polymerizable group on the antifouling performance? Quintana R; JaĆczewski D; Vasantha VA; Jana S; Lee SS; Parra-Velandia FJ; Guo S; Parthiban A; Teo SL; Vancso GJ Colloids Surf B Biointerfaces; 2014 Aug; 120():118-24. PubMed ID: 24907581 [TBL] [Abstract][Full Text] [Related]
8. Control of surface properties using fluorinated polymer brushes produced by surface-initiated controlled radical polymerization. Andruzzi L; Hexemer A; Li X; Ober CK; Kramer EJ; Galli G; Chiellini E; Fischer DA Langmuir; 2004 Nov; 20(24):10498-506. PubMed ID: 15544378 [TBL] [Abstract][Full Text] [Related]
9. Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling. Chang Y; Shu SH; Shih YJ; Chu CW; Ruaan RC; Chen WY Langmuir; 2010 Mar; 26(5):3522-30. PubMed ID: 19947616 [TBL] [Abstract][Full Text] [Related]
11. Neutron reflectivity study of the swollen structure of polyzwitterion and polyeletrolyte brushes in aqueous solution. Kobayashi M; Ishihara K; Takahara A J Biomater Sci Polym Ed; 2014; 25(14-15):1673-86. PubMed ID: 25178564 [TBL] [Abstract][Full Text] [Related]
12. Adsorption and desorption behavior of asphaltene on polymer-brush-immobilized surfaces. Higaki Y; Hatae K; Ishikawa T; Takanohashi T; Hayashi J; Takahara A ACS Appl Mater Interfaces; 2014 Nov; 6(22):20385-9. PubMed ID: 25370500 [TBL] [Abstract][Full Text] [Related]
13. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
14. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171 [TBL] [Abstract][Full Text] [Related]
15. Quantitative evaluation of interaction force between functional groups in protein and polymer brush surfaces. Sakata S; Inoue Y; Ishihara K Langmuir; 2014 Mar; 30(10):2745-51. PubMed ID: 24564418 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and swelling behavior of pH-responsive polybase brushes. Sanjuan S; Perrin P; Pantoustier N; Tran Y Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342 [TBL] [Abstract][Full Text] [Related]
17. Responsive Copolymer Brushes of Poly[(2-(Methacryloyloxy)Ethyl) Trimethylammonium Chloride] (PMETAC) and Poly((1)H,(1)H,(2)H,(2)H-Perfluorodecyl acrylate) (PPFDA) to Modulate Surface Wetting Properties. Politakos N; Azinas S; Moya SE Macromol Rapid Commun; 2016 Apr; 37(7):662-7. PubMed ID: 26872001 [TBL] [Abstract][Full Text] [Related]
18. Reconstruction of surfaces from mixed hydrocarbon and PEG components in water: responsive surfaces aid fouling release. Cho Y; Sundaram HS; Finlay JA; Dimitriou MD; Callow ME; Callow JA; Kramer EJ; Ober CK Biomacromolecules; 2012 Jun; 13(6):1864-74. PubMed ID: 22530840 [TBL] [Abstract][Full Text] [Related]
19. Effect of the hydrophobic basal layer of thermoresponsive block co-polymer brushes on thermally-induced cell sheet harvest. Matsuzaka N; Takahashi H; Nakayama M; Kikuchi A; Okano T J Biomater Sci Polym Ed; 2012; 23(10):1301-14. PubMed ID: 21722425 [TBL] [Abstract][Full Text] [Related]
20. High density scaffolding of functional polymer brushes: surface initiated atom transfer radical polymerization of active esters. Orski SV; Fries KH; Sheppard GR; Locklin J Langmuir; 2010 Feb; 26(3):2136-43. PubMed ID: 20099926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]