These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 22500801)

  • 21. Compaction of a bacterial group I ribozyme coincides with the assembly of core helices.
    Perez-Salas UA; Rangan P; Krueger S; Briber RM; Thirumalai D; Woodson SA
    Biochemistry; 2004 Feb; 43(6):1746-53. PubMed ID: 14769052
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA folding pathways and the self-assembly of ribosomes.
    Woodson SA
    Acc Chem Res; 2011 Dec; 44(12):1312-9. PubMed ID: 21714483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Concerted kinetic folding of a multidomain ribozyme with a disrupted loop-receptor interaction.
    Treiber DK; Williamson JR
    J Mol Biol; 2001 Jan; 305(1):11-21. PubMed ID: 11114243
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein roles in group I intron RNA folding: the tyrosyl-tRNA synthetase CYT-18 stabilizes the native state relative to a long-lived misfolded structure without compromising folding kinetics.
    Chadee AB; Bhaskaran H; Russell R
    J Mol Biol; 2010 Jan; 395(3):656-70. PubMed ID: 19913030
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA Structural Modules Control the Rate and Pathway of RNA Folding and Assembly.
    Gracia B; Xue Y; Bisaria N; Herschlag D; Al-Hashimi HM; Russell R
    J Mol Biol; 2016 Oct; 428(20):3972-3985. PubMed ID: 27452365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Entropic stabilization of folded RNA in crowded solutions measured by SAXS.
    Kilburn D; Behrouzi R; Lee HT; Sarkar K; Briber RM; Woodson SA
    Nucleic Acids Res; 2016 Nov; 44(19):9452-9461. PubMed ID: 27378777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Productive folding to the native state by a group II intron ribozyme.
    Swisher JF; Su LJ; Brenowitz M; Anderson VE; Pyle AM
    J Mol Biol; 2002 Jan; 315(3):297-310. PubMed ID: 11786013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the Azoarcus ribozyme: tight binding to guanosine and substrate by an unusually small group I ribozyme.
    Kuo LY; Davidson LA; Pico S
    Biochim Biophys Acta; 1999 Dec; 1489(2-3):281-92. PubMed ID: 10673029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stability and cooperativity of individual tertiary contacts in RNA revealed through chemical denaturation.
    Ralston CY; He Q; Brenowitz M; Chance MR
    Nat Struct Biol; 2000 May; 7(5):371-4. PubMed ID: 10802732
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure-function relationships of two closely related group IC3 intron ribozymes from Azoarcus and Synechococcus pre-tRNA.
    Ikawa Y; Naito D; Shiraishi H; Inoue T
    Nucleic Acids Res; 2000 Sep; 28(17):3269-77. PubMed ID: 10954594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Small angle X-ray scattering reveals a compact intermediate in RNA folding.
    Russell R; Millett IS; Doniach S; Herschlag D
    Nat Struct Biol; 2000 May; 7(5):367-70. PubMed ID: 10802731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energetics of hydrogen bond networks in RNA: hydrogen bonds surrounding G+1 and U42 are the major determinants for the tertiary structure stability of the hairpin ribozyme.
    Klostermeier D; Millar DP
    Biochemistry; 2002 Dec; 41(48):14095-102. PubMed ID: 12450372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal ion dependence of cooperative collapse transitions in RNA.
    Moghaddam S; Caliskan G; Chauhan S; Hyeon C; Briber RM; Thirumalai D; Woodson SA
    J Mol Biol; 2009 Oct; 393(3):753-64. PubMed ID: 19712681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway.
    Russell R; Herschlag D
    J Mol Biol; 2001 May; 308(5):839-51. PubMed ID: 11352576
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of A-minor tertiary interactions within a bacterial group I intron active site by 3-deazaadenosine interference mapping.
    Soukup JK; Minakawa N; Matsuda A; Strobel SA
    Biochemistry; 2002 Aug; 41(33):10426-38. PubMed ID: 12173929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Folding pathways of the Tetrahymena ribozyme.
    Mitchell D; Russell R
    J Mol Biol; 2014 Jun; 426(12):2300-12. PubMed ID: 24747051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Topological and thermodynamic factors that influence the evolution of small networks of catalytic RNA species.
    Yeates JAM; Nghe P; Lehman N
    RNA; 2017 Jul; 23(7):1088-1096. PubMed ID: 28389432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deletion of the P5abc peripheral element accelerates early and late folding steps of the Tetrahymena group I ribozyme.
    Russell R; Tijerina P; Chadee AB; Bhaskaran H
    Biochemistry; 2007 May; 46(17):4951-61. PubMed ID: 17419589
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic intermediates trapped by native interactions in RNA folding.
    Treiber DK; Rook MS; Zarrinkar PP; Williamson JR
    Science; 1998 Mar; 279(5358):1943-6. PubMed ID: 9506945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An obligate intermediate along the slow folding pathway of a group II intron ribozyme.
    Su LJ; Waldsich C; Pyle AM
    Nucleic Acids Res; 2005; 33(21):6674-87. PubMed ID: 16314300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.