These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 22500801)

  • 41. Perturbed folding kinetics of circularly permuted RNAs with altered topology.
    Heilman-Miller SL; Woodson SA
    J Mol Biol; 2003 Apr; 328(2):385-94. PubMed ID: 12691747
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Design of a highly reactive HDV ribozyme sequence uncovers facilitation of RNA folding by alternative pairings and physiological ionic strength.
    Brown TS; Chadalavada DM; Bevilacqua PC
    J Mol Biol; 2004 Aug; 341(3):695-712. PubMed ID: 15288780
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monovalent ion-mediated folding of the Tetrahymena thermophila ribozyme.
    Shcherbakova I; Gupta S; Chance MR; Brenowitz M
    J Mol Biol; 2004 Oct; 342(5):1431-42. PubMed ID: 15364572
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhancing the prebiotic relevance of a set of covalently self-assembling, autorecombining RNAs through in vitro selection.
    Burton AS; Lehman N
    J Mol Evol; 2010 Mar; 70(3):233-41. PubMed ID: 20198367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiple unfolding events during native folding of the Tetrahymena group I ribozyme.
    Wan Y; Suh H; Russell R; Herschlag D
    J Mol Biol; 2010 Jul; 400(5):1067-77. PubMed ID: 20541557
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A thermodynamic framework and cooperativity in the tertiary folding of a Mg2+-dependent ribozyme.
    Fang X; Pan T; Sosnick TR
    Biochemistry; 1999 Dec; 38(51):16840-6. PubMed ID: 10606517
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiple monovalent ion-dependent pathways for the folding of the L-21 Tetrahymena thermophila ribozyme.
    Uchida T; Takamoto K; He Q; Chance MR; Brenowitz M
    J Mol Biol; 2003 Apr; 328(2):463-78. PubMed ID: 12691754
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New pathways in folding of the Tetrahymena group I RNA enzyme.
    Russell R; Herschlag D
    J Mol Biol; 1999 Sep; 291(5):1155-67. PubMed ID: 10518951
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone.
    Tijerina P; Bhaskaran H; Russell R
    Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16698-703. PubMed ID: 17075070
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The P5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis.
    Engelhardt MA; Doherty EA; Knitt DS; Doudna JA; Herschlag D
    Biochemistry; 2000 Mar; 39(10):2639-51. PubMed ID: 10704214
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RNA molecules with conserved catalytic cores but variable peripheries fold along unique energetically optimized pathways.
    Mitra S; Laederach A; Golden BL; Altman RB; Brenowitz M
    RNA; 2011 Aug; 17(8):1589-603. PubMed ID: 21712400
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inverse RNA Folding Workflow to Design and Test Ribozymes that Include Pseudoknots.
    Kayedkhordeh M; Yamagami R; Bevilacqua PC; Mathews DH
    Methods Mol Biol; 2021; 2167():113-143. PubMed ID: 32712918
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Crystallographic structures of the hammerhead ribozyme: relationship to ribozyme folding and catalysis.
    Wedekind JE; McKay DB
    Annu Rev Biophys Biomol Struct; 1998; 27():475-502. PubMed ID: 9646875
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The fastest global events in RNA folding: electrostatic relaxation and tertiary collapse of the Tetrahymena ribozyme.
    Das R; Kwok LW; Millett IS; Bai Y; Mills TT; Jacob J; Maskel GS; Seifert S; Mochrie SG; Thiyagarajan P; Doniach S; Pollack L; Herschlag D
    J Mol Biol; 2003 Sep; 332(2):311-9. PubMed ID: 12948483
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced specificity against misfolding in a thermostable mutant of the Tetrahymena ribozyme.
    Wan Y; Russell R
    Biochemistry; 2011 Feb; 50(5):864-74. PubMed ID: 21174447
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mapping nucleic acid structure by hydroxyl radical cleavage.
    Tullius TD; Greenbaum JA
    Curr Opin Chem Biol; 2005 Apr; 9(2):127-34. PubMed ID: 15811796
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fast formation of the P3-P7 pseudoknot: a strategy for efficient folding of the catalytically active ribozyme.
    Zhang L; Xiao M; Lu C; Zhang Y
    RNA; 2005 Jan; 11(1):59-69. PubMed ID: 15574515
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural metals in the group I intron: a ribozyme with a multiple metal ion core.
    Stahley MR; Adams PL; Wang J; Strobel SA
    J Mol Biol; 2007 Sep; 372(1):89-102. PubMed ID: 17612557
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Magnesium-dependent folding of self-splicing RNA: exploring the link between cooperativity, thermodynamics, and kinetics.
    Pan J; Thirumalai D; Woodson SA
    Proc Natl Acad Sci U S A; 1999 May; 96(11):6149-54. PubMed ID: 10339556
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme.
    Strobel SA; Cech TR
    Biochemistry; 1993 Dec; 32(49):13593-604. PubMed ID: 7504953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.