These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 22500825)
1. Enhanced transport of 2,2',5,5'-polychlorinated biphenyl by natural organic matter (NOM) and surfactant-modified fullerene nanoparticles (nC60). Wang L; Huang Y; Kan AT; Tomson MB; Chen W Environ Sci Technol; 2012 May; 46(10):5422-9. PubMed ID: 22500825 [TBL] [Abstract][Full Text] [Related]
2. Effects of the preparation method and humic-acid modification on the mobility and contaminant-mobilizing capability of fullerene nanoparticles (nC60). Wang L; Hou L; Wang X; Chen W Environ Sci Process Impacts; 2014 May; 16(6):1282-9. PubMed ID: 24463710 [TBL] [Abstract][Full Text] [Related]
3. Contaminant-mobilizing capability of fullerene nanoparticles (nC60): Effect of solvent-exchange process in nC60 formation. Wang L; Fortner JD; Hou L; Zhang C; Kan AT; Tomson MB; Chen W Environ Toxicol Chem; 2013 Feb; 32(2):329-36. PubMed ID: 23172734 [TBL] [Abstract][Full Text] [Related]
4. Facilitated transport of 2,2',5,5'-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sandy soil columns. Zhang L; Wang L; Zhang P; Kan AT; Chen W; Tomson MB Environ Sci Technol; 2011 Feb; 45(4):1341-8. PubMed ID: 21254786 [TBL] [Abstract][Full Text] [Related]
5. Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling. Zhang L; Hou L; Wang L; Kan AT; Chen W; Tomson MB Environ Sci Technol; 2012 Jul; 46(13):7230-8. PubMed ID: 22681192 [TBL] [Abstract][Full Text] [Related]
6. Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles. Zhang W; Rattanaudompol US; Li H; Bouchard D Water Res; 2013 Apr; 47(5):1793-802. PubMed ID: 23374256 [TBL] [Abstract][Full Text] [Related]
7. Enhanced mobility of fullerene (C60) nanoparticles in the presence of stabilizing agents. Wang Y; Li Y; Costanza J; Abriola LM; Pennell KD Environ Sci Technol; 2012 Nov; 46(21):11761-9. PubMed ID: 22973990 [TBL] [Abstract][Full Text] [Related]
8. Effects of molecular weight-dependent physicochemical heterogeneity of natural organic matter on the aggregation of fullerene nanoparticles in mono- and di-valent electrolyte solutions. Shen MH; Yin YG; Booth A; Liu JF Water Res; 2015 Mar; 71():11-20. PubMed ID: 25577691 [TBL] [Abstract][Full Text] [Related]
9. Transport and retention of fullerene (nC60) nanoparticles in unsaturated porous media: effects of solution chemistry and solid phase coating. Chen L; Sabatini DA; Kibbey TC J Contam Hydrol; 2012 Sep; 138-139():104-12. PubMed ID: 22858671 [TBL] [Abstract][Full Text] [Related]
10. Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles. Xie B; Xu Z; Guo W; Li Q Environ Sci Technol; 2008 Apr; 42(8):2853-9. PubMed ID: 18497134 [TBL] [Abstract][Full Text] [Related]
11. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Zhang M; He F; Zhao D; Hao X Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362 [TBL] [Abstract][Full Text] [Related]
12. Removal of natural organic matter using surfactant-modified iron oxide-coated sand. Ding C; Yang X; Liu W; Chang Y; Shang C J Hazard Mater; 2010 Feb; 174(1-3):567-72. PubMed ID: 19828248 [TBL] [Abstract][Full Text] [Related]
13. UV irradiation and humic acid mediate aggregation of aqueous fullerene (nC₆₀) nanoparticles. Qu X; Hwang YS; Alvarez PJ; Bouchard D; Li Q Environ Sci Technol; 2010 Oct; 44(20):7821-6. PubMed ID: 20866048 [TBL] [Abstract][Full Text] [Related]
14. Effect of dispersion on adsorption of atrazine by aqueous suspensions of fullerenes. Gai K; Shi B; Yan X; Wang D Environ Sci Technol; 2011 Jul; 45(14):5959-65. PubMed ID: 21692500 [TBL] [Abstract][Full Text] [Related]
15. Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model. Phenrat T; Song JE; Cisneros CM; Schoenfelder DP; Tilton RD; Lowry GV Environ Sci Technol; 2010 Jun; 44(12):4531-8. PubMed ID: 20465214 [TBL] [Abstract][Full Text] [Related]
16. Partitioning of hydrophobic organic chemicals (HOC) into anionic and cationic surfactant-modified sorbents. Karapanagioti HK; Sabatini DA; Bowman RS Water Res; 2005 Feb; 39(4):699-709. PubMed ID: 15707643 [TBL] [Abstract][Full Text] [Related]
17. Complex interplay between formation routes and natural organic matter modification controls capabilities of C Hou L; Fortner JD; Wang X; Zhang C; Wang L; Chen W J Environ Sci (China); 2017 Jan; 51():315-323. PubMed ID: 28115144 [TBL] [Abstract][Full Text] [Related]
18. Preparation and characterization of stable aqueous higher-order fullerenes. Aich N; Flora JR; Saleh NB Nanotechnology; 2012 Feb; 23(5):055705. PubMed ID: 22236869 [TBL] [Abstract][Full Text] [Related]
19. Quenching and sensitizing fullerene photoreactions by natural organic matter. Kong L; Mukherjee B; Chan YF; Zepp RG Environ Sci Technol; 2013 Jun; 47(12):6189-96. PubMed ID: 23662979 [TBL] [Abstract][Full Text] [Related]
20. Biosorption of nanoparticles to heterotrophic wastewater biomass. Kiser MA; Ryu H; Jang H; Hristovski K; Westerhoff P Water Res; 2010 Jul; 44(14):4105-14. PubMed ID: 20547403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]